Link title: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
a)
a)


Remember that dummy variable<math> \lambda</math> was used as a substitution such that <math> \lambda= t-t_0 \! </math>
Remember that dummy variable <math> \lambda \!</math> was used in substitution such that <math> \lambda= t-t_0 \! </math>


See then that <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \!
This means <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \!</math> In my notations <math>S(f_0)=S(f)|_{f=0 \!</math>


<math>f_0=0 \!</math> where <math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt \! </math>
The problem statement says let <math>f_0=0 \!</math> where <math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt \! </math>



<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math>
<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math>

Revision as of 20:15, 18 December 2009

Back to my home page


Problem Statement

6(a) Show .

6(b) If can you find in terms of ?

Answer

a)

Remember that dummy variable was used in substitution such that

This means In my notations Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S(f_0)=S(f)|_{f=0 \!}

The problem statement says let where



</math> and


Therefore