Link title: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
'''Problem Statement'''
'''Problem Statement'''


6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>.
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(f_0) = 0 </math>.


6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?
6(b) If <math> S(f_0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?


'''Answer'''
'''Answer'''
Line 15: Line 15:


and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda \! </math>
and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda \! </math>


The problem statement says to make <math>S(f_0)=0 \!</math> that makes the above equation simplify to  
The problem statement says to make <math>S(f_0)=0 \!</math> that makes the above equation simplify to  


<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math>
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math>
Taking the inverse Fourier Transform and changing the order of intgration


<math> \int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{- \infty}^{t} e^{j2 \pi f t} \,dt \int_{- \infty}^{\infty}  S(f)\,df = \frac{ e^{j2 \pi f t}} {j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\! </math>  
<math> \int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{- \infty}^{t} e^{j2 \pi f t} \,dt \int_{- \infty}^{\infty}  S(f)\,df = \frac{ e^{j2 \pi f t}} {j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\! </math>  
Then


<math>\int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{\infty}^{\infty} S(f)\frac{ e^{j2 \pi f t}} {j2 \pi f }\,df = \mathcal{F }^{-1}\left[  \frac{S(f)}{j2 \pi f} \right] \! </math>
<math>\int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{\infty}^{\infty} S(f)\frac{ e^{j2 \pi f t}} {j2 \pi f }\,df = \mathcal{F }^{-1}\left[  \frac{S(f)}{j2 \pi f} \right] \! </math>


Therefore <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \!</math>
Therefore it is demonstrated that <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \!</math>
 
 
 
 
 


In my notations <math>S(f_0)=S(f)|_{f=0 \!</math>


The problem statement says let <math>f_0=0 \!</math> where  <math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt \! </math>
b)If <math>S(f_0)\neq 0</math>


<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math>
Then <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} [S (f)- S(f_0)] \,d\lambda \! </math>

Latest revision as of 21:58, 18 December 2009

Back to my home page


Problem Statement

6(a) Show [ts(λ)dλ]=S(f)j2πf if S(f0)=0.

6(b) If S(f0)0 can you find [ts(λ)dλ] in terms of S(0)?

Answer

a)Remember that dummy variable λ was used in substitution such that λ=tt0

Then s(λ)=s(tt0)=[S(f)S(f0)]

and ts(λ)dλ=t[S(f)S(f0)]dλ

The problem statement says to make S(f0)=0 that makes the above equation simplify to

ts(λ)dλ=t[S(f)]dt

Taking the inverse Fourier Transform and changing the order of intgration

ts(λ)dλ=tej2πftdtS(f)df=ej2πftj2πfS(f)df=

Then

ts(λ)dλ=S(f)ej2πftj2πfdf=1[S(f)j2πf]

Therefore it is demonstrated that [ts(λ)dλ]=S(f)j2πf


b)If S(f0)0

Then ts(λ)dλ=t1[S(f)S(f0)]dλ=tej2πft[S(f)S(f0)]dλ