Link title: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
'''Problem Statement'''
'''Problem Statement'''


6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>.
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(f_0) = 0 </math>.


6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?
6(b) If <math> S(f_0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?


'''Answer'''
'''Answer'''
Line 32: Line 32:


b)If <math>S(f_0)\neq 0</math>   
b)If <math>S(f_0)\neq 0</math>   
Then <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} [S (f)- S(f_0)] \,d\lambda \! </math>
 
Then <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} [S (f)- S(f_0)] \,d\lambda \! </math>

Latest revision as of 21:58, 18 December 2009

Back to my home page


Problem Statement

6(a) Show [ts(λ)dλ]=S(f)j2πf if S(f0)=0.

6(b) If S(f0)0 can you find [ts(λ)dλ] in terms of S(0)?

Answer

a)Remember that dummy variable λ was used in substitution such that λ=tt0

Then s(λ)=s(tt0)=[S(f)S(f0)]

and ts(λ)dλ=t[S(f)S(f0)]dλ

The problem statement says to make S(f0)=0 that makes the above equation simplify to

ts(λ)dλ=t[S(f)]dt

Taking the inverse Fourier Transform and changing the order of intgration

ts(λ)dλ=tej2πftdtS(f)df=ej2πftj2πfS(f)df=

Then

ts(λ)dλ=S(f)ej2πftj2πfdf=1[S(f)j2πf]

Therefore it is demonstrated that [ts(λ)dλ]=S(f)j2πf


b)If S(f0)0

Then ts(λ)dλ=t1[S(f)S(f0)]dλ=tej2πft[S(f)S(f0)]dλ