ASN4 -Fourier Transform property: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
Find the Fourier transform of <math> cos(2\pi f_0t)g(t)= \!</math>
Find the Fourier transform of <math> cos(2\pi f_0t)g(t)= \!</math>


\mathcal{F}[cos(2\pi f_0t)g(t)]=


<math> \mathcal{F}[cos(2\pi f_0t)g(t)] \!</math>
Using Euler's cosine identity


Applying the forward Fourier transform
<math> \mathcal{F}[cos(2\pi f_0t)g(t)]=\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt \!</math>

<math> =\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt \!</math>

Applying Euler's cosine identity


<math> = \int_{-\infty}^{\infty} [\frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math>
<math> = \int_{-\infty}^{\infty} [\frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math>

Revision as of 10:13, 19 December 2009

Back to my home page

Find the Fourier transform of


Applying the forward Fourier transform

Applying Euler's cosine identity

Identifying that the above equation contains Fourier Transforms the solution is