ASN4 -Fourier Transform property: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
New page: Back to my home page '''Find '''<math>\mathcal{F}[cos(w_0t)g(t)]\!</math> Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(...
 
Jodi.Hodge (talk | contribs)
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Jodi Hodge| Back to my home page]]
Find the Fourier transform of <math> cos(2\pi f_0t)g(t) \!</math>
<math> \mathcal{F}[cos(2\pi f_0t)g(t)] \!</math>
Applying the forward Fourier transform
<math> =\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt \!</math>
Applying Euler's cosine identity


[[Jodi Hodge| Back to my home page]]
<math> = \int_{-\infty}^{\infty} [\frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math>


'''Find '''<math>\mathcal{F}[cos(w_0t)g(t)]\!</math>
Distribting to both terms in side the brackets


Recall <math> w_0 = 2\pi f_0\!</math>, so
<math> = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}e^{-j2\pi ft} dt + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math>


<math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math>
Combining exponential terms


Using Euler's cosine identity <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math>
<math> =\int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f-f_0)t}g(t)dt \ + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f+f_0)t}g(t)dt \!</math>


Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt \ + \ \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0) \ + \ \frac{1}{2}G(f+f_0)\!</math><br><br>
Note that there are forward Fourier Transform expressions in the above equation. With substitution the result is
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br>
<math>\mathcal{F}[cos(2\pi f_0t)g(t)] = \frac{1}{2}G(f-f_0)+ \frac{1}{2}[G(f+f_0)\!</math>

Latest revision as of 11:37, 19 December 2009

Back to my home page

Find the Fourier transform of cos(2πf0t)g(t)


[cos(2πf0t)g(t)]

Applying the forward Fourier transform

=cos(2πf0t)g(t)ej2πftdt

Applying Euler's cosine identity

=[12ej2πf0t+12ej2πf0t]g(t)ej2πftdt

Distribting to both terms in side the brackets

=12ej2πf0tej2πftdt+12ej2πf0tg(t)ej2πftdt

Combining exponential terms

=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt

Note that there are forward Fourier Transform expressions in the above equation. With substitution the result is

[cos(2πf0t)g(t)]=12G(ff0)+12[G(f+f0)