Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(25 intermediate revisions by 5 users not shown)
Line 1: Line 1:
[http://cnx.org/content/m0045/latest/ Some properties to choose from if you are having difficulty....]
[http://cnx.org/content/m0045/latest/ Some properties to choose from if you are having difficulty....]


[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br>
==[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br>==
1.  '''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>'''
 
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
'''Look carefully at the signs in section 2 for <math>f^'</math> and <math>f^{''}</math> after the * operation.  I think the signs are backwards but it ends up working out just fine because <math>\delta (f^{''}-f^')=\delta (f^'-f^{''})</math> -Brandon'''<br>
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>
'''Corrected -Max'''
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0)+ \frac{1}{2}G(f+f_0)\!</math><br>
 
 
1.  '''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br><br>'''
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br><br>
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br><br>
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt \ + \ \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0) \ + \ \frac{1}{2}G(f+f_0)\!</math><br><br>
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br>
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br>
2.  '''Find <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg]\!</math><br>'''
 
 
reviewed by [[Joshua Sarris]]
 
 
2.  '''Find <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg]\!</math><br><br>'''
Recall <math> g(t)= \mathcal{F}^{-1}[G(f)] = \int_{-\infty}^{\infty}G(f)e^{j2\pi ft}df\!</math><br>
Recall <math> g(t)= \mathcal{F}^{-1}[G(f)] = \int_{-\infty}^{\infty}G(f)e^{j2\pi ft}df\!</math><br>
Similarly, <math> h(t)= \mathcal{F}^{-1}[H(f)] = \int_{-\infty}^{\infty}H(f)e^{j2\pi ft}df\!</math><br>
Similarly, <math> h(t)= \mathcal{F}^{-1}[H(f)] = \int_{-\infty}^{\infty}H(f)e^{j2\pi ft}df\!</math><br>
So <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}G(f^')e^{j2\pi f^'t}df^' \Bigg(\int_{-\infty}^{\infty}H(f^{''})e^{j2\pi f^{''}t}df^{''}\Bigg)^* dt \!</math><br>
So <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}G(f^')e^{j2\pi f^'t}df^' \Bigg(\int_{-\infty}^{\infty}H(f^{''})e^{j2\pi f^{''}t}df^{''}\Bigg)^* dt \!</math><br>
Now <math>\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}G(f^')e^{j2\pi f^'t}df^' \Bigg(\int_{-\infty}^{\infty}H(f^{''})e^{j2\pi f^{''}t}df^{''}\Bigg)^* dt = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt df^{''} df^' \!</math><br><br>
Now <math>\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}G(f^')e^{j2\pi f^'t}df^' \Bigg(\int_{-\infty}^{\infty}H(f^{''})e^{j2\pi f^{''}t}df^{''}\Bigg)^* dt = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^'-f^{''})t}dt df^{''} df^' \!</math><br><br>
Note that <math>\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt = \delta (f^{''}-f^') \!</math><br><br>
Note that <math>\int_{-\infty}^{\infty}e^{j2\pi (f^'-f^{''})t}dt = \delta (f^'-f^{''}) \!</math><br><br>
So <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br>
<i>Added step per Nick's suggestion</i><br><br>
Someone please review this!
Substituting gives us <math>\int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^'-f^{''})t}dt df^{''} df^' = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\delta (f^'-f^{''}) df^{''} df^' \!</math><br><br>
And <math> \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\delta (f^'-f^{''}) df^{''} df^'  = \int_{-\infty}^{\infty}G(f^')H^*(f^')df^' \!</math><br><br>
Since <math> f^' \!</math> is a simply a dummy variable, we can conclude that: <br><br>
<math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br>
 
"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"
 
Example: <math>\int_{a1}^{a2}\int_{b1}^{b2}X(s')Y(s'') \delta (s''-s') \,ds' \,ds'' = \int_{a1}^{a2}X(s')Y(s') \,ds' </math>
 
Reviewed by [[Nick Christman]]


----
----


[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
==[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>==
'''Find <math>\mathcal{F}[10^{t}g(t)e^{j2 \pi ft_{0}}]</math><br/>'''
Note: After scratching my head for a couple of hours, I decided that I would try a different Fourier Property. In fact, I chose a property that would need to be defined in order to show my second property.
1. '''Find <math>\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] </math><br/>'''
 
This is a fairly straightforward property and is known as ''complex modulation''<br/>
 
<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt
</math>
 
Combining terms, we get:
 
<math>
\int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt
</math>
<br/>
 
Now let's make the following substitution <math> \displaystyle \theta = f-f_{0}</math>
 
This now gives us a surprisingly familiar function:
 
<math>
\int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi \theta t} \,dt
</math>
<br/>
 
This looks just like <math> \displaystyle G(\theta )</math>!
 
We can now conclude that:
<br/>
 
<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(\theta ) = G(f-f_{0})
</math>
<br/>
<br/>
 
'''PLEASE ENTER PEER REVIEW HERE'''
 
<br/>
<br/>
 
2. '''Find <math>\mathcal{F} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right]</math><br/>'''
 
-- Using the above definition of ''complex modulation'' and the definition from class of a ''time delay'' (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...
<br/>
 
By definition we know that:
 
<math>
\mathcal{F} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt
</math>
 
Rearranging terms we get:
 
<math>
\int_{- \infty}^{\infty} \left[ g(t-t_{0})e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt
</math>
<br/>
 
Now lets make the substitution <math>\lambda = t-t_{0} \rightarrow t = \lambda + t_{0}</math>.
<br/>
This leads us to:


To begin, we know that<br/>
<math>
\int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,d \lambda
</math>


<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0}e^{-j2 \pi ft}\,dt = \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi f(t_{0}-t)}\,dt</math>
After some simplification and rearranging terms, we get:


But recall that <math>e^{j2 \pi f(t_{0}-t)} \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math>
<math>
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,d \lambda = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,d \lambda
</math>


Rearranging the terms yet again, we get:


Because of this definition, our problem has now been simplified significantly: <br/>
<math>
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,d \lambda = e^{-j2 \pi (f-f_{0})t_{0}} \left[ \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda }  \,d \lambda \right]
</math>


<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = \int_{-\infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)</math> <br/>
We know that the exponential in terms of <math>\displaystyle t_{0}</math> is simply a constant and because of the Fourier Property of ''complex modualtion'', we finally get:


Therefore,
<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(f-f_{0})e^{-j2 \pi (f-f_{0})t_{0}}
</math>


<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = 10^{t_0}g(t_0) </math>
<br/>


'''Reviewed by [[Kevin Starkey]] --> add <math>\, d \lambda</math> above... other than that it looks good.'''


<br/>
<br/>


----
----


[[Joshua Sarris|<b><u>Joshua Sarris</u></b>]]<br><br>
==[[Joshua Sarris|<b><u>Joshua Sarris</u></b>]]<br><br>==
'''Find <math>\mathcal{F}[sin(w_0t)g(t)]\!</math><br>'''
'''Find <math>\mathcal{F}[sin(w_0t)g(t)]\!</math><br>'''


Line 58: Line 151:
<math>\int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>
<math>\int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>


Now integrating gives us,
Now integrating gives us,  


<math>\int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt-\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{j2}G(f-f_0)- \frac{1}{j2}G(f+f_0)\!</math><br>
<math>\int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt-\frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{j2}G(f-f_0)- \frac{1}{j2}G(f+f_0)\!</math><br>




Line 69: Line 162:
or rather
or rather


<math>\mathcal{F}[sin(w_0t)g(t)] =\frac{1}{2}j[G(f-f_0)+ G(f+f_0)]\!</math>
<math>\mathcal{F}[sin(w_0t)g(t)] =\frac{1}{2}j[G(f+f_0)+ G(f-f_0)]\!</math>
 
[[Fourier Transform Property review|Reviewed by Max Woesner]]
 
Also reviewed by [[Nick Christman]]
-- Looks good.
 
 
 
'''Find <math>\mathcal{F}[\frac{d}{dt} x(t)] \!</math><br>'''
 
We begin by finding the Fourier of x(t).
 
<math>\mathcal{F}[\frac{d}{dt} x(t)] = \frac{d}{dt} [ \int_{-\infty}^{\infty} x(t)e^{-j2 \pi f t} df]</math>
 
We can then pull the derivitive into the integral and carry out its opperation.
 
 
<math> \int_{-\infty}^{\infty} x(t)\frac{d}{dt} e^{-j2 \pi ft} dt = -j2\pi f \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt</math>
 
Since we know <math>\int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt</math> is X(f) we can simplify.
 
<math>\mathcal{F}[\frac{d}{dt} x(t)]= -j2\pi f X(f)</math>
 
----
 
==[[Kevin Starkey|<b><u>Kevin Starkey</u></b>]] <br> <br>==
1. Find <math> \mathcal{F}\left[\int_{-\infty}^ \infty s(t)dt\right]</math> <br>
First we know that <math> \mathcal{F}\left[\int_{-\infty}^ \infty s(t)dt\right] = \int_{-\infty}^\infty\left(\int_{-\infty}^ \infty s(t)dt\right)e^{-j2\pi ft} dt </math> <br>
We also know that <math> \mathcal{F}\left[s(t)\right] = S(f) \mbox{ and } \int_{-\infty}^ \infty e^{-j2\pi ft} dt = \delta(f) </math> <br>
(+) Which gives us <math> \int_{-\infty}^\infty\left(\int_{-\infty}^ \infty s(t)dt\right)e^{-j2\pi ft} dt = \int_{-\infty}^ \infty S(f) \delta (f)df </math> <br>
Since <math> \int_{-\infty}^ \infty \delta (f) df </math> is only non-zero at f = 0 this yeilds <br>
<math> \int_{-\infty}^ \infty S(f) \delta (f)df = S(0) </math> <br>
So <math> \mathcal{F}\left[\int_{-\infty}^ \infty s(t)dt\right] = S(0)</math> <br><br>
 
Reviewed by [[Nick Christman]]
-- I fixed one typo (needed a minus sign in the exponential). I'm not sure about the step (+). I would like to believe it, but I'm just not sure that it works... if you are sure it works, maybe add a little comment to explain it a little better. Other than that, it looks good! <br><br><br>
 
2. Find <math>\mathcal{F}\left[e^{j2\pi f_0t}s(t)\right] </math><br>
First <math>\mathcal{F}\left[e^{j2\pi f_0t}s(t)\right] = \int_{- \infty}^{\infty}e^{j2\pi f_0t}s(t)e^{-j2\pi ft} </math><br>
or rearranging we get <math> \int_{- \infty}^{\infty}e^{j2\pi f_0t}s(t)e^{-j2\pi ft}dt = \int_{- \infty}^{\infty}s(t)e^{-j2\pi t(f -f_0)}dt</math><br>
Which leads to <math> \int_{- \infty}^{\infty}s(t)e^{-j2\pi t(f -f_0)}dt = S(f-f_0)</math><br>
So <math>\mathcal{F}\left[e^{j2\pi f_0t}s(t)\right] = S(f-f_0) </math><br><br><br>


[[Fourier Transform Property review|Reviewed by Max]]
'''PLEASE ENTER PEER REVIEW HERE'''<BR><BR><BR>

Latest revision as of 23:26, 30 November 2009

Some properties to choose from if you are having difficulty....

Max Woesner

Look carefully at the signs in section 2 for f' and f' after the * operation. I think the signs are backwards but it ends up working out just fine because δ(f'f')=δ(f'f') -Brandon
Corrected -Max


1. Find [cos(w0t)g(t)]

Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt

Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt

Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)

So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]


reviewed by Joshua Sarris


2. Find [g(t)h*(t)dt]

Recall g(t)=1[G(f)]=G(f)ej2πftdf
Similarly, h(t)=1[H(f)]=H(f)ej2πftdf
So [g(t)h*(t)dt]=G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt
Now G(f')ej2πf'tdf'(H(f')ej2πf'tdf')*dt=G(f')H*(f')ej2π(f'f')tdtdf'df'

Note that ej2π(f'f')tdt=δ(f'f')

Added step per Nick's suggestion

Substituting gives us G(f')H*(f')ej2π(f'f')tdtdf'df'=G(f')H*(f')δ(f'f')df'df'

And G(f')H*(f')δ(f'f')df'df'=G(f')H*(f')df'

Since f' is a simply a dummy variable, we can conclude that:

[g(t)h*(t)dt]=G(f)H*(f)df

"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"

Example: a1a2b1b2X(s)Y(s)δ(ss)dsds=a1a2X(s)Y(s)ds

Reviewed by Nick Christman


Nick Christman

Note: After scratching my head for a couple of hours, I decided that I would try a different Fourier Property. In fact, I chose a property that would need to be defined in order to show my second property.

1. Find [g(t)ej2πf0t]

This is a fairly straightforward property and is known as complex modulation

[g(t)ej2πf0t]=[g(t)ej2πf0t]ej2πftdt

Combining terms, we get:

[g(t)ej2πf0t]ej2πftdt=g(t)ej2π(ff0)tdt

Now let's make the following substitution θ=ff0

This now gives us a surprisingly familiar function:

g(t)ej2π(ff0)tdt=g(t)ej2πθtdt

This looks just like G(θ)!

We can now conclude that:

[g(t)ej2πf0t]=G(θ)=G(ff0)

PLEASE ENTER PEER REVIEW HERE



2. Find [g(tt0)ej2πf0t]

-- Using the above definition of complex modulation and the definition from class of a time delay (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...

By definition we know that:

[g(tt0)ej2πf0t]=[g(tt0)ej2πf0t]ej2πftdt

Rearranging terms we get:

[g(tt0)ej2πf0t]ej2πftdt=g(tt0)ej2π(ff0)tdt

Now lets make the substitution λ=tt0t=λ+t0.
This leads us to:

g(tt0)ej2π(ff0)tdt=g(λ)ej2π(ff0)(λ+t0)dλ

After some simplification and rearranging terms, we get:

g(λ)ej2π(ff0)(λ+t0)dλ=g(λ)ej2π(ff0)λej2π(ff0)t0dλ

Rearranging the terms yet again, we get:

g(λ)ej2π(ff0)λej2π(ff0)t0dλ=ej2π(ff0)t0[g(λ)ej2π(ff0)λdλ]

We know that the exponential in terms of t0 is simply a constant and because of the Fourier Property of complex modualtion, we finally get:

[g(t)ej2πf0t]=G(ff0)ej2π(ff0)t0


Reviewed by Kevin Starkey --> add dλ above... other than that it looks good.




Joshua Sarris

Find [sin(w0t)g(t)]


Recall w0=2πf0,

so expanding we have,

[sin(w0t)g(t)]=[sin(2πf0t)g(t)]=sin(2πf0t)g(t)ej2πftdt

Also recall sin(θ)=1j2(ejθejθ),

so we can convert to exponentials.

sin(2πf0t)g(t)ej2πftdt=1j2[ej2πf0tej2πf0t]g(t)ej2πftdt

Now integrating gives us,

1j2[ej2πf0tej2πf0t]g(t)ej2πftdt=1j2ej2π(ff0)tg(t)dt1j2ej2π(f+f0)tg(t)dt=1j2G(ff0)1j2G(f+f0)


So we now have the identity,

[sin(w0t)g(t)]=1j2[G(ff0)G(f+f0)]

or rather

[sin(w0t)g(t)]=12j[G(f+f0)+G(ff0)]

Reviewed by Max Woesner

Also reviewed by Nick Christman -- Looks good.


Find [ddtx(t)]

We begin by finding the Fourier of x(t).

[ddtx(t)]=ddt[x(t)ej2πftdf]

We can then pull the derivitive into the integral and carry out its opperation.


x(t)ddtej2πftdt=j2πfx(t)ej2πftdt

Since we know x(t)ej2πftdt is X(f) we can simplify.

[ddtx(t)]=j2πfX(f)


Kevin Starkey

1. Find [s(t)dt]
First we know that [s(t)dt]=(s(t)dt)ej2πftdt
We also know that [s(t)]=S(f) and ej2πftdt=δ(f)
(+) Which gives us (s(t)dt)ej2πftdt=S(f)δ(f)df
Since δ(f)df is only non-zero at f = 0 this yeilds
S(f)δ(f)df=S(0)
So [s(t)dt]=S(0)

Reviewed by Nick Christman -- I fixed one typo (needed a minus sign in the exponential). I'm not sure about the step (+). I would like to believe it, but I'm just not sure that it works... if you are sure it works, maybe add a little comment to explain it a little better. Other than that, it looks good!


2. Find [ej2πf0ts(t)]
First [ej2πf0ts(t)]=ej2πf0ts(t)ej2πft
or rearranging we get ej2πf0ts(t)ej2πftdt=s(t)ej2πt(ff0)dt
Which leads to s(t)ej2πt(ff0)dt=S(ff0)
So [ej2πf0ts(t)]=S(ff0)


PLEASE ENTER PEER REVIEW HERE