ASN2 - Something Interesting: Exponential: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 2: Line 2:




Fourier Series  
Here's an demonstration of using the expontential function in a Fourier Series example.


Using cosine to represent the basis functions
One way of representing a basis function is with cosine <math> cos(\frac{ 2 \pi nt}{T}) \!</math>
<math> x1(t)= \sum_{n=0}^\infty a_n cos(\frac{ 2 \pi nt}{T}) \!</math>
.


Using an exponential to represent basis functions
Where the Fourier series is <math> x1(t)= \sum_{n=0}^\infty a_n cos(\frac{ 2 \pi nt}{T}) \!</math>
<math> x1(t)= \sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}} \!</math>


To solve for the coefffients <math> a_n \!</math> the solutions for both are almost identical. The benefit of using the eponetialinstead of cosine is that mathematical it is simplier for solving.
However, a more convient way is using an exponential funtion <math> e^{\frac{ j2 \pi nt}{T}} \!</math>.


To solve for the coefficients do the dot product ' '''.''' ' of the basis function and <math> x(t) \!</math>  
<math> x2(t)= \sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}} \!</math>


To solve a Fourier series equation for the coefffients <math>  a_n \!</math> using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving. To find the coefficients perform the dot product ' '''.''' '  as follows.


<math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!</math>
Using exponential basis function
 
<math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n \delta_{mn} \!</math>
 
Then the result is


<math>a_m=\int_{-\frac{T}{2}}^{\frac{T}{2}}x2(t)e^{\frac{ -j2 \pi mt}{T}} dt </math>
<math>a_m=\int_{-\frac{T}{2}}^{\frac{T}{2}}x2(t)e^{\frac{ -j2 \pi mt}{T}} dt </math>


Using cosine basis function


<math> x1(t) \!</math> '''.''' <math> cos({\frac{ 2 \pi mt}{T}}) = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n cos({\frac{ 2 \pi nt}{T}})cos{\frac{ 2 \pi mt}{T}} dt \!</math> At this point you should use a trig identity
<math> x1(t) \!</math> '''.''' <math> cos({\frac{ 2 \pi mt}{T}}) = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n cos({\frac{ 2 \pi nt}{T}})cos{\frac{ 2 \pi mt}{T}} dt \!</math> At this point you should use a trig identity
Line 24: Line 29:
applying this trig identity gives
applying this trig identity gives


<math>frac{1}{2} \sum_{n=0}^\infty a_n \\int_{-\frac{T}{2}}^{\frac{T}{2}} cos({\frac{ j2 \pi (n-m)t}{T}})cos({\frac{ j2 \pi (n+m)t}{T}}) dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!</math>
<math> \frac{1}{2} \sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} cos({\frac{ j2 \pi (n-m)t}{T}})cos({\frac{ j2 \pi (n+m)t}{T}}) dt =\frac{1}{2}\sum_{n=0}^\infty a_n T \delta_{mn} \!</math>
 
Then the result is
 
<math>a_m=\int_{-\frac{T}{2}}^{\frac{T}{2}}x1(t)cos({\frac{ 2 \pi mt}{T}}) dt </math>

Latest revision as of 22:52, 13 December 2009

Back to my Home Page


Here's an demonstration of using the expontential function in a Fourier Series example.

One way of representing a basis function is with cosine cos(2πntT) .

Where the Fourier series is x1(t)=n=0ancos(2πntT)

However, a more convient way is using an exponential funtion ej2πntT.

x2(t)=n=0anej2πntT

To solve a Fourier series equation for the coefffients an using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving. To find the coefficients perform the dot product ' . ' as follows.

Using exponential basis function

x2(t) . ej2πmtT=T2T2n=0anej2πntTej2πmtTdt=n=0anT2T2ej2π(nm)tTdt=n=0anδmn

Then the result is

am=T2T2x2(t)ej2πmtTdt

Using cosine basis function

x1(t) . cos(2πmtT)=T2T2n=0ancos(2πntT)cos2πmtTdt At this point you should use a trig identity

applying this trig identity gives

12n=0anT2T2cos(j2π(nm)tT)cos(j2π(n+m)tT)dt=12n=0anTδmn

Then the result is

am=T2T2x1(t)cos(2πmtT)dt