ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
 
(21 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Jodi Hodge|Back to my Home Page]]
[[Jodi Hodge|Back to my Home Page]]
When T is very large (approaching infinity) the quanity on the left transforms to be approximately the quanity on the right.
<math>          \lim_{T\to \infty}  </math>




Line 7: Line 11:
<math> n/T        \longrightarrow f </math>  
<math> n/T        \longrightarrow f </math>  
                
                
<math> \sum_{n=-\infty}^\infty  \frac{1}{T}\longrightarrow  \int_{-\infty] ^ \infty }(  )df \! </math>
<math> \sum_{n=-\infty}^\infty  \frac{1}{T}\longrightarrow  \int_{-\infty} ^ {\infty }(  )df \! </math>
 
 
Using the relations above, can we make an unperiodic signal such as the one given below and make it periodic by taking the limit?
 
<math> x(t)= \lim_{T\to \infty} \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' )e^{\frac{ j2 \pi nt}{T}} \!</math>


note that
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' \!</math>


Can we make an unperiodic signal and make it periodic by taking the limit?
Using the Fourier Transform property along with  <math> \lim_{T\to \infty} n/t = f </math> then


<math> x(t)= \lim_{T\to \infty \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T}} dt' )e^{\frac{ j2 \pi nt}{T}} \!</math>
<math> x(t)= \int_{-\infty} ^ {\infty} [\int_{-\infty} ^ {\infty} x(t')e^{ -j2 \pi ft'} dt'] e^{ j2 \pi ft}df \!</math>


note that  f replaced with n/t and that
Reordering order of integration
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T}} dt' \!</math>


<math> X(F)=\mathcal{F}[x(t)]\!<math>
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt'  \!</math>


'''THE GAME'''
note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math>


LTI (Linear Time Invariant System)
<math> x(t)=  \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt'  \!</math>


Input    LTI                      Output        Reason
Using such techniquies as we did above (refered to as The Game in Signals and Systems), similar equations can be manipulated to find its output of Linear Invarient System.




                      THE GAME
            LTI (Linear Time Invariant System)
Input    LTI                            Output                                  Reason


<math> x(t)\longrightarrow  \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt'  \!</math>      Superposition


<math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!</math>
<math> X(f)\longrightarrow  \int_{-\infty} ^ {\infty} X(f')\delta_(f'-f) df'  \!</math>     Superposition

Latest revision as of 22:34, 17 December 2009

Back to my Home Page

When T is very large (approaching infinity) the quanity on the left transforms to be approximately the quanity on the right.

limT


1/Tdf

n/Tf

n=1T()df


Using the relations above, can we make an unperiodic signal such as the one given below and make it periodic by taking the limit?

x(t)=limT1T(T2T2x(t)ej2πntTdt)ej2πntT

note that X(F)=[x(t)]T2T2x(t)ej2πntTdt

Using the Fourier Transform property along with limTn/t=f then

x(t)=[x(t)ej2πftdt]ej2πftdf

Reordering order of integration

x(t)=x(t)[ej2πf(tt)df]dt

note that the defination of the delta function is ej2πf(tt)df

x(t)=x(t)δ(tt)dt

Using such techniquies as we did above (refered to as The Game in Signals and Systems), similar equations can be manipulated to find its output of Linear Invarient System.


                     THE GAME
            LTI (Linear Time Invariant System) 
Input     LTI                             Output                                  Reason

x(t)x(t)δ(tt)dt Superposition

X(f)X(f)δ(ff)df Superposition