ASN2 - Something Interesting: Exponential: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
One way of representing a basis function is with cosine <math> cos(\frac{ 2 \pi nt}{T}) \!</math> |
One way of representing a basis function is with cosine <math> cos(\frac{ 2 \pi nt}{T}) \!</math> |
||
. |
. |
||
Where the Fourier series is <math> x1(t)= \sum_{n=0}^\infty a_n cos(\frac{ 2 \pi nt}{T}) \!</math> |
Where the Fourier series is <math> x1(t)= \sum_{n=0}^\infty a_n cos(\frac{ 2 \pi nt}{T}) \!</math> |
||
Line 12: | Line 13: | ||
<math> x2(t)= \sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}} \!</math> |
<math> x2(t)= \sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}} \!</math> |
||
To solve a Fourier series equation for the coefffients <math> a_n \!</math> using the above expressions result in similar solutions |
To solve a Fourier series equation for the coefffients <math> a_n \!</math> using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving. To find the coefficients perform the dot product ' '''.''' ' as follows. |
||
Using exponential basis function |
|||
The procedure to solve for the coefficients is to perform the dot product ' '''.''' ' operation of the basis function with <math> x(t) \!</math> |
|||
⚫ | <math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n \delta_{mn} \!</math> |
||
Then the result is |
|||
⚫ | <math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n |
||
Then |
|||
<math>a_m=\int_{-\frac{T}{2}}^{\frac{T}{2}}x2(t)e^{\frac{ -j2 \pi mt}{T}} dt </math> |
<math>a_m=\int_{-\frac{T}{2}}^{\frac{T}{2}}x2(t)e^{\frac{ -j2 \pi mt}{T}} dt </math> |
||
Using cosine basis function |
|||
<math> x1(t) \!</math> '''.''' <math> cos({\frac{ 2 \pi mt}{T}}) = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n cos({\frac{ 2 \pi nt}{T}})cos{\frac{ 2 \pi mt}{T}} dt \!</math> At this point you should use a trig identity |
<math> x1(t) \!</math> '''.''' <math> cos({\frac{ 2 \pi mt}{T}}) = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n cos({\frac{ 2 \pi nt}{T}})cos{\frac{ 2 \pi mt}{T}} dt \!</math> At this point you should use a trig identity |
||
Line 29: | Line 31: | ||
<math> \frac{1}{2} \sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} cos({\frac{ j2 \pi (n-m)t}{T}})cos({\frac{ j2 \pi (n+m)t}{T}}) dt =\frac{1}{2}\sum_{n=0}^\infty a_n T \delta_{mn} \!</math> |
<math> \frac{1}{2} \sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} cos({\frac{ j2 \pi (n-m)t}{T}})cos({\frac{ j2 \pi (n+m)t}{T}}) dt =\frac{1}{2}\sum_{n=0}^\infty a_n T \delta_{mn} \!</math> |
||
Then |
Then the result is |
||
<math>a_m=\int_{-\frac{T}{2}}^{\frac{T}{2}}x1(t)cos({\frac{ 2 \pi mt}{T}}) dt </math> |
<math>a_m=\int_{-\frac{T}{2}}^{\frac{T}{2}}x1(t)cos({\frac{ 2 \pi mt}{T}}) dt </math> |
Latest revision as of 21:52, 13 December 2009
Here's an demonstration of using the expontential function in a Fourier Series example.
One way of representing a basis function is with cosine .
Where the Fourier series is
However, a more convient way is using an exponential funtion .
To solve a Fourier series equation for the coefffients using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving. To find the coefficients perform the dot product ' . ' as follows.
Using exponential basis function
.
Then the result is
Using cosine basis function
. At this point you should use a trig identity
applying this trig identity gives
Then the result is