Link title: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:
'''Problem Statement'''
'''Problem Statement'''


6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>.
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(f_0) = 0 </math>.


6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?
6(b) If <math> S(f_0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?


'''Answer'''
'''Answer'''
Line 12: Line 12:
a)Remember that dummy variable <math> \lambda \!</math> was used in substitution such that <math> \lambda= t-t_0 \! </math>
a)Remember that dummy variable <math> \lambda \!</math> was used in substitution such that <math> \lambda= t-t_0 \! </math>


This means <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \!</math>
Then <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \!</math>


and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda \! </math>
In the problemstatement it says to make <math>S(f_0)=0 \!</math>


The problem statement says to make <math>S(f_0)=0 \!</math> that makes the above equation simplify to


<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math>


Taking the inverse Fourier Transform and changing the order of intgration


</math> and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda \! </math>
<math> \int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{- \infty}^{t} e^{j2 \pi f t} \,dt \int_{- \infty}^{\infty} S(f)\,df = \frac{ e^{j2 \pi f t}} {j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\! </math>


Then


<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math>

<math> \mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] = \int_{- \infty}^{t} e^{j2 \pi f t} \,dt \int_{- \infty}^{\infty} S(f)\,df = \frac{ e^{j2 \pi f t}} {j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\! </math>


<math>\int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{\infty}^{\infty} S(f)\frac{ e^{j2 \pi f t}} {j2 \pi f }\,df = \mathcal{F }^{-1}\left[ \frac{S(f)}{j2 \pi f} \right] \! </math>
<math>\int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{\infty}^{\infty} S(f)\frac{ e^{j2 \pi f t}} {j2 \pi f }\,df = \mathcal{F }^{-1}\left[ \frac{S(f)}{j2 \pi f} \right] \! </math>


Therefore <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \!</math>
Therefore it is demonstrated that <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \!</math>







In my notations <math>S(f_0)=S(f)|_{f=0 \!</math>


b)If <math>S(f_0)\neq 0</math>
The problem statement says let <math>f_0=0 \!</math> where <math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt \! </math>


<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math>
Then <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} [S (f)- S(f_0)] \,d\lambda \! </math>

Latest revision as of 20:58, 18 December 2009

Back to my home page


Problem Statement

6(a) Show .

6(b) If can you find in terms of ?

Answer

a)Remember that dummy variable was used in substitution such that

Then

and

The problem statement says to make that makes the above equation simplify to

Taking the inverse Fourier Transform and changing the order of intgration

Then

Therefore it is demonstrated that


b)If

Then