Link title: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
'''Problem Statement''' |
'''Problem Statement''' |
||
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S( |
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(f_0) = 0 </math>. |
||
6(b) If <math> S( |
6(b) If <math> S(f_0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>? |
||
'''Answer''' |
'''Answer''' |
||
Line 32: | Line 32: | ||
b)If <math>S(f_0)\neq 0</math> |
b)If <math>S(f_0)\neq 0</math> |
||
Then <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} [S (f)- S(f_0)] \,d\lambda \! </math> |
Then <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] \,d\lambda = \int_{- \infty}^{t}\int_{- \infty}^{\infty} e^{j2 \pi f t} [S (f)- S(f_0)] \,d\lambda \! </math> |
Latest revision as of 20:58, 18 December 2009
Problem Statement
6(a) Show .
6(b) If can you find in terms of ?
Answer
a)Remember that dummy variable was used in substitution such that
Then
and
The problem statement says to make that makes the above equation simplify to
Taking the inverse Fourier Transform and changing the order of intgration
Then
Therefore it is demonstrated that
b)If
Then