ASN4 -Fourier Transform property: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Jodi Hodge| Back to my home page]]
[[Jodi Hodge| Back to my home page]]


Find the Fourier transform of <math> cos(2\pi f_0t)g(t)= \!</math>
Find the Fourier transform of <math> cos(2\pi f_0t)g(t) \!</math>


\mathcal{F}[cos(2\pi f_0t)g(t)]=


<math> \mathcal{F}[cos(2\pi f_0t)g(t)] \!</math>
Using Euler's cosine identity


Applying the forward Fourier transform
<math> \mathcal{F}[cos(2\pi f_0t)g(t)]=\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt \!</math>

<math> =\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt \!</math>

Applying Euler's cosine identity


<math> = \int_{-\infty}^{\infty} [\frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math>
<math> = \int_{-\infty}^{\infty} [\frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math>


Distribting to both terms in side the brackets
<math> = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math>


<math> = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}e^{-j2\pi ft} dt + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math>
<math> = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}e^{-j2\pi ft} dt + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math>

Combining exponential terms


<math> =\int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f-f_0)t}g(t)dt \ + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f+f_0)t}g(t)dt \!</math>
<math> =\int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f-f_0)t}g(t)dt \ + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f+f_0)t}g(t)dt \!</math>


Identifying that the above equation contains Fourier Transforms the solution is
Note that there are forward Fourier Transform expressions in the above equation. With substitution the result is
<math>\mathcal{F}[cos(2\pi f_0t)g(t)] = \frac{1}{2}G(f-f_0)+ \frac{1}{2}[G(f+f_0)\!</math>
<math>\mathcal{F}[cos(2\pi f_0t)g(t)] = \frac{1}{2}G(f-f_0)+ \frac{1}{2}[G(f+f_0)\!</math>

Latest revision as of 10:37, 19 December 2009

Back to my home page

Find the Fourier transform of


Applying the forward Fourier transform

Applying Euler's cosine identity

Distribting to both terms in side the brackets

Combining exponential terms

Note that there are forward Fourier Transform expressions in the above equation. With substitution the result is