EMEC - Greg: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
 
(23 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=Definitions=
===Definitions===
[http://en.wikipedia.org/wiki/Electromagnetism#Units Electromagnetism Units]

{|class="wikitable"
{| class="wikitable" border="1"
| Symbol || Units || Name
! Symbol !! Units !! Name !! Definition
|-
|-
|
| <math>\overrightarrow{E}</math>|| <math>\frac{V}{M}</math> || Electric Field Intensity
|
| Flux
| A scalar value. The rate of transfer of energy (or another physical quantity) per unit area. <ref> [http://en.wiktionary.org/wiki/flux#Noun Wiktionary - Flux] </ref>
|-
|-
| <math>\overrightarrow{D}</math>|| <math>\frac{C}{M^2}</math> || Electric Flux Density
| <math>\overrightarrow{E}</math>
| <math>\frac{V}{M}</math>
| Electric field (intensity/strength)
| The space surrounding an electric charge. It will exert a force on other electrically charged objects.
|-
|-
| <math>\overrightarrow{H}</math>|| <math>\frac{A}{M}</math> || Magnetic Field Intensity
| <math>\overrightarrow{D}</math>
| <math>\frac{C}{M^2}</math>
| Electric (flux density/displacement field)
| The amount of electric flux in a unit area perpendicular to the direction of electric field
|-
|-
| <math>\overrightarrow{B}</math>|| <math>T = \frac{W}{M^2}</math> || Magnetic Flux Density
| <math>\overrightarrow{H}</math>
| <math>\frac{A}{M}</math>
| Magnetic field (intensity/strength)
| A magnetic field is a vector field which surrounds magnets and electric currents, and is detected by the force it exerts on moving electric charges and on magnetic materials. <ref> [http://www.rfcafe.com/references/electrical/magnetic-field.htm Magnetic field] </ref>
|-
| <math>\overrightarrow{B}</math>
| <math>T = \frac{W}{M^2}</math>
| Magnetic (flux density/induction)
| The amount of magnetic flux in a unit area perpendicular to the direction of magnetic flow <ref> [http://wordnetweb.princeton.edu/perl/webwn?s=magnetic%20flux%20density Magnetic flux density] </ref>
|}
|}


[[Image:fieldlines.jpg|thumb|300px|Electric field lines <ref> [http://www.molcad.de/competence/fieldlines.html.en Electric field lines]</ref> ]]
=Analogies between Electric & Magnetic Circuits=
[[Image:Electflux.jpg|thumb|300px|Electric flux density <ref> [http://www.bun.kyoto-u.ac.jp/~suchii/maxwell.eq.html Electric flux density] </ref> ]]


===Analogies between Electric & Magnetic Circuits===
{|border="1"
{|class="wikitable" border="1"
| Electric || Magnetic
! Electric !! Magnetic !! Notes
|-
|-
| <math>V = \int \overrightarrow{E} \cdot \overrightarrow{dl}</math>|| <math>\overrightarrow{F} = \int \overrightarrow{H} \cdot \overrightarrow{dl}</math>
| <math>V = \int \overrightarrow{E} \overrightarrow{dl}</math>
| <math>\overrightarrow{F} = \int \overrightarrow{H} \overrightarrow{dl}</math>
|-
|-
| <math>\sum_{n} V_{n} = 0 = \oint \overrightarrow{E} \cdot \overrightarrow{dl}</math> Kirchoff's voltage law|| <math>\oint \overrightarrow{H} \cdot \overrightarrow{dl} = N \cdot i = \sum_{n} H \cdot l + N \cdot i = 0 </math>
| <math>\sum_{n} V_{n} = 0 = \oint \overrightarrow{E} \overrightarrow{dl}</math>
| <math>\oint \overrightarrow{H} \overrightarrow{dl} = N i = \sum_{n} H l + N i = 0 </math>
|Kirchoff's voltage law, Ampere's law
|-
|-
| <math>\sum_{n} I_{n} = 0 = \oint_{S} \overrightarrow{J} \cdot \overrightarrow{dS}</math> Kirchoff's current law|| <math>\oint \overrightarrow{B} \cdot \overrightarrow{dS} = 0 </math> The B-field has to go around in a loop
| <math>\sum_{n} I_{n} = 0 = \oint_{S} \overrightarrow{J} \overrightarrow{dS}</math>
| <math>\oint \overrightarrow{B} \overrightarrow{dS} = 0 </math>
|Kirchoff's current law, The B-field has to go around in a loop
|-
|-
| <math>\oint \overrightarrow{J} \cdot \overrightarrow{dS} = I</math> || <math>\int \overrightarrow{B} \cdot \overrightarrow{dS} = \overbrace{\Phi}^{phi} </math> Magnetic flux
| <math>\oint \overrightarrow{J} \overrightarrow{dS} = I</math>
| <math>\int \overrightarrow{B} \overrightarrow{dS} = \Phi </math>
|-
|Magnetic flux, Phi
| <math> R = \frac{V}{I}</math> || <math> \overbrace{R}^{reluctance} = \frac{F}{\Phi} = \frac{N \cdot i}{\Phi}</math>
|-
| <math> I = \frac{V}{R} = G \cdot V </math> or <math>\overrightarrow{J} = \sigma \cdot \overrightarrow{E}</math> || <math>\overrightarrow{B} = \mu \cdot H </math> assumed linearity (though it's not always the case - think hysteresis loop
|}


=== Parenthesizing big expressions, brackets, bars ===
{| class="wikitable"
! Feature !! Syntax !! How it looks rendered
|-
|-
| <math> R = \frac{V}{I}</math>
| Bad
| <code>( \frac{1}{2} )</code>
| <math> \mathfrak{R} = \frac{F}{\Phi} = \frac{N i}{\Phi}</math>
|Reluctance
| <math>( \frac{1}{2} )</math>
|-
|-
| <math> I = \frac{V}{R} = G V </math> or <math>\overrightarrow{J} = \sigma \overrightarrow{E}</math>
| Good
| <code>\left ( \frac{1}{2} \right )</code>
| <math>\overrightarrow{B} = \mu H </math>
| Assumes linearity - exceptions: Hysterisis loop, etc
| <math>\left ( \frac{1}{2} \right )</math>
|}
|}
===References===
<references/>

Latest revision as of 13:17, 7 January 2010

Definitions

Electromagnetism Units

Symbol Units Name Definition
Flux A scalar value. The rate of transfer of energy (or another physical quantity) per unit area. <ref> Wiktionary - Flux </ref>
Electric field (intensity/strength) The space surrounding an electric charge. It will exert a force on other electrically charged objects.
Electric (flux density/displacement field) The amount of electric flux in a unit area perpendicular to the direction of electric field
Magnetic field (intensity/strength) A magnetic field is a vector field which surrounds magnets and electric currents, and is detected by the force it exerts on moving electric charges and on magnetic materials. <ref> Magnetic field </ref>
Magnetic (flux density/induction) The amount of magnetic flux in a unit area perpendicular to the direction of magnetic flow <ref> Magnetic flux density </ref>
Electric field lines <ref> Electric field lines</ref>
Electric flux density <ref> Electric flux density </ref>

Analogies between Electric & Magnetic Circuits

Electric Magnetic Notes
Kirchoff's voltage law, Ampere's law
Kirchoff's current law, The B-field has to go around in a loop
Magnetic flux, Phi
Reluctance
or Assumes linearity - exceptions: Hysterisis loop, etc

References

<references/>