HW 03: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 28: | Line 28: | ||
<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum | {| border="0" cellpadding="0" cellspacing="0" | ||
|- | |||
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m b_n \phi_n (t)^* \,dt</math> | |||
|<math>=\sum_n \sum _m a_n b_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math> | |||
|- | |||
| | |||
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t)^* \right \rangle</math> | |||
|- | |||
| | |||
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm^*}</math> | |||
|- | |||
| | |||
|<math>=\sum_n a_n b_n^*</math> | |||
|} |
Revision as of 16:26, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.
Solution