HW 03: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 30: | Line 30: | ||
{| border="0" cellpadding="0" cellspacing="0" |
{| border="0" cellpadding="0" cellspacing="0" |
||
|- |
|- |
||
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum |
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _n a_n \phi_n (t)^* \,dt</math> |
||
|<math>=\sum_n \sum |
|<math>=\sum_n \sum _n a_n a_n^* \int_{-\infty}^{\infty} \phi_n (t) \phi_n (t)^* \,dt</math> |
||
|- |
|- |
||
| |
| |
||
|<math>=\sum_n |
|<math>=\sum_n a_n a_n^* \left \langle \phi_n (t) | \phi_n (t)^* \right \rangle</math> |
||
|- |
|- |
||
| |
| |
||
|<math>=\sum_n |
|<math>=\sum_n a_n a_n^* \delta_{nn^*}</math> |
||
|- |
|- |
||
| |
| |
||
|<math>=\sum_n a_n |
|<math>=\sum_n \left | a_n \right |^2</math> |
||
|} |
|} |
Revision as of 15:31, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.
Solution