HW 03: Difference between revisions
Jump to navigation
Jump to search
Line 18: | Line 18: | ||
|- |
|- |
||
| |
| |
||
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t) |
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math> |
||
|- |
|- |
||
| |
| |
||
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm |
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm}</math> |
||
|- |
|- |
||
| |
| |
||
|<math>=\sum_n a_n b_n^*</math> |
|<math>=\sum_n a_n b_n^*</math> |
||
|} |
|} |
||
*Note <math>\delta_{nm^*}=\delta_{nm}</math> |
|||
{| border="0" cellpadding="0" cellspacing="0" |
{| border="0" cellpadding="0" cellspacing="0" |
||
Line 34: | Line 33: | ||
|- |
|- |
||
| |
| |
||
|<math>=\sum_n \sum _m a_n a_m^* \left \langle \phi_n (t) | \phi_m (t) |
|<math>=\sum_n \sum _m a_n a_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math> |
||
|- |
|- |
||
| |
| |
Latest revision as of 17:27, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.