Fall 2009/JonathanS: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 5: Line 5:
== Solution ==
== Solution ==


Assuming no damping and a small angle(<math>\theta < 15^o</math>), the equation for the motion of a simple pendulum can be written as:
Assuming no damping and a small angle(<math>\theta < 15^o</math>), the equation for the motion of a simple pendulum can be written as
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{g\over \ell}\theta=0.</math>
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{g\over \ell}\theta=0.</math>


We can then use the Laplace Transform to convert from the '''time(t)''' domain into the '''s''' domain.


Given
Substituting values we get
:<math>\mathcal{L}\{f(t)\}=F(s)</math>
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{9.81\over 0.5}\theta=0.</math>
:<math>\Rightarrow{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta=0.</math>


:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}=f^{ ''}(t)</math>
 
Remember the identities
:<math>\mathcal{L}\{f(t)\}=F(s)=\int_0^{\infty} e^{-st} f(t) \,dt. </math>


:<math>\mathcal{L}\{f^{ ''}(t)\}=s^2F(s)-sf(0)-f^{ '}(0)</math>
:<math>\mathcal{L}\{f^{ ''}(t)\}=s^2F(s)-sf(0)-f^{ '}(0)</math>
We have
 
:<math>\mathcal{L}\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{g\over \ell}\theta\}=s^2F(s)-sf(0)-f^{ '}(0)+{g\over \ell}\theta</math>
 
Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with
:<math>\mathcal{L}\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math>
:<math>\Rightarrow</math>  <math>\s^2\theta-s\theta(0)-\theta^{ '}(0)+19.62\theta=0</math>

Revision as of 13:54, 22 October 2009

Problem

A simple pendulum with a length L = 0.5m is pulled back and released from an initial angle θ0=12o. Find it's location at t = 3s.

Solution

Assuming no damping and a small angle(θ<15o), the equation for the motion of a simple pendulum can be written as

d2θdt2+gθ=0.


Substituting values we get

d2θdt2+9.810.5θ=0.
d2θdt2+19.62θ=0.


Remember the identities

{f(t)}=F(s)=0estf(t)dt.
{f'(t)}=s2F(s)sf(0)f'(0)


Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with

{d2θdt2+19.62θ}=s2F(s)sf(0)f'(0)+19.62θ=0
Failed to parse (unknown function "\s"): {\displaystyle \s^2\theta-s\theta(0)-\theta^{ '}(0)+19.62\theta=0}