Fall 2009/JonathanS: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 82: Line 82:
:<math>\begin{alignat}{3}
:<math>\begin{alignat}{3}
           \lim_{n \to 0}\mathcal{L}\{f^{ '}(t)\} & = \lim_{n \to 0}sF(s)-f(\infty)=\lim_{n \to 0}\int_{0^-}^{\infty}f^{ '}(t)e^{-st}\, dt \\
           \lim_{n \to 0}\mathcal{L}\{f^{ '}(t)\} & = \lim_{n \to 0}sF(s)-f(\infty)=\lim_{n \to 0}\int_{0^-}^{\infty}f^{ '}(t)e^{-st}\, dt \\
       & = \lim_{n \to 0}s\bigg({12s\over {s^2+(4.429)^2}}\bigg)-f(\infty)=0 \\
       & = \lim_{n \to 0}s\bigg({12s^3+13s\over {(s^4+20.62s^2+19.62)}}\bigg)-f(\infty)=0 \\
       & = \lim_{n \to 0}s\bigg({12s\over {s^2+(4.429)^2}}\bigg)=f(\infty) \\
       & = \lim_{n \to 0}s\bigg({12s^3+13s\over {(s^4+20.62s^2+19.62)}}\bigg)=f(\infty) \\
     0 & = f (\infty) \\
     0 & = f (\infty) \\
\end{alignat}</math>
\end{alignat}</math>

Revision as of 15:14, 28 October 2009

Problem

A simple pendulum with a length L = 0.5m is pulled back and released from an initial angle θ0=12o. Then it is run with a forcing function of cos(3θ) Find an equation that gives the angle of the pendulum at any given time t.

Solution

Assuming no damping and a small angle(θ<15o), the equation for the motion of a simple pendulum can be written as

d2θdt2+gθ=cos(3θ).


Substituting values we get

d2θdt2+9.810.5θ=cos(3θ).

d2θdt2+19.62θ=cos(3θ).


Remember the identities

{f(t)}=F(s)=0estf(t)dt.
{f'(t)}=s2F(s)sf(0)f'(0)


Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with

{d2θdt2+19.62θ}=s2F(s)sf(0)f'(0)+19.62θ={cos(3θ)}

s2θsθ(0)θ'(0)+19.62θ=ss2+1


Since we know that θ(0)=12o and the initial velocity θ'(0)=0 we get

s2θ12s+19.62θ=ss2+1

θ(s2+19.62)=ss2+1+12s

θ(s2+19.62)=ss2+1+12s(s2+1)s2+1

θ(s2+19.62)=s(12s2+13)s2+1

θ=s(12s2+13)(s2+19.62)(s2+1)

θ=12s3+13s(s4+20.62s2+19.62)


Now we can take the inverse Laplace Transform to convert our equation back into the time domain

1{12s3+13s(s4+20.62s2+19.62)}=0.0537057cos(t)+11.9463cos(4.42945t)


This will give us the angle (in degrees) of the pendulum at any given time t.


Initial Value Theorem

We can use the Initial Value Theorem as a check that our initial values for the problem are valid.

{f'(t)}=sF(s)f(0)=0f'(t)estdt
limn{f'(t)}=limnsF(s)f(0)=limnsF(s)f(0)=0=limnsF(s)=f(0)

Below we will use this theorem to check the values for our problem.

limn{f'(t)}=limnsF(s)f(0)=limn0f'(t)estdt=limns(12s3+13s(s4+20.62s2+19.62))f(0)=0=limns(12s3+13s(s4+20.62s2+19.62))=f(0)12=f(0)

This value f(0)=12 is the initial angle we gave the pendulum so it checks out.

Final Value Theorem

We can use the Final Value Theorem as a check that our final values for the problem are valid.

{f'(t)}=sF(s)f()=0f'(t)estdt
limn0{f'(t)}=limn0sF(s)f()=limn0sF(s)f()=0=limn0sF(s)=f()

Below we will use this theorem to check the values for our problem.

limn0{f'(t)}=limn0sF(s)f()=limn00f'(t)estdt=limn0s(12s3+13s(s4+20.62s2+19.62))f()=0=limn0s(12s3+13s(s4+20.62s2+19.62))=f()0=f()

This is zero because the average angle as time goes to infinity will be zero (halfway between -12 and 12 degrees).

Bode Plot