Fourier Transform Properties: Difference between revisions
No edit summary |
No edit summary |
||
Line 146: | Line 146: | ||
<math>\int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br> | <math>\int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br> | ||
Now integrating gives us, | Now integrating gives us, | ||
<math>\int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt-\frac{1}{ | <math>\int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}-e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt-\frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{j2}G(f-f_0)- \frac{1}{j2}G(f+f_0)\!</math><br> | ||
Line 162: | Line 162: | ||
Also reviewed by [[Nick Christman]] | Also reviewed by [[Nick Christman]] | ||
-- Looks good. | -- Looks good. | ||
---- | ---- | ||
Revision as of 17:08, 8 November 2009
Some properties to choose from if you are having difficulty....
Max Woesner
1. Find
Recall , so
Also recall ,so
Now
So
reviewed by Joshua Sarris
2. Find
Recall
Similarly,
So
Now
Note that
Added step per Nick's suggestion
Substituting gives us
And
Since is a simply a dummy variable, we can conclude that:
"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"
Example:
Reviewed by Nick Christman
Nick Christman
Note: After scratching my head for a couple of hours, I decided that I would try a different Fourier Property. In fact, I chose a property that would need to be defined in order to show my second property.
1. Find
This is a fairly straightforward property and is known as complex modulation
Combining terms, we get:
Now let's make the following substitution
This now gives us a surprisingly familiar function:
This looks just like !
We can now conclude that:
PLEASE ENTER PEER REVIEW HERE
2. Find
-- Using the above definition of complex modulation and the definition from class of a time delay (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...
By definition we know that:
Rearranging terms we get:
Now lets make the substitution .
This leads us to:
After some simplification and rearranging terms, we get:
Rearranging the terms yet again, we get:
We know that the exponential in terms of is simply a constant and because of the Fourier Property of complex modualtion, we finally get:
PLEASE ENTER PEER REVIEW HERE
Joshua Sarris
Find
Recall
,
so expanding we have,
Also recall ,
so we can convert to exponentials.
Now integrating gives us,
So we now have the identity,
or rather
Also reviewed by Nick Christman -- Looks good.
Kevin Starkey
1. Find
First we know that
We also know that
(+) Which gives us
Since is only non-zero at f = 0 this yeilds
So
Reviewed by Nick Christman
-- I fixed one typo (needed a minus sign in the exponential). I'm not sure about the step (+). I would like to believe it, but I'm just not sure that it works... if you are sure it works, maybe add a little comment to explain it a little better. Other than that, it looks good!
2. Find
First
or rearranging we get
Which leads to
So
PLEASE ENTER PEER REVIEW HERE