Fourier Transform Properties: Difference between revisions
No edit summary |
No edit summary |
||
Line 98: | Line 98: | ||
<math> | <math> | ||
\int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \, | \int_{- \infty}^{\infty} g(t-t_{0})e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,d \lambda | ||
</math> | </math> | ||
Line 104: | Line 104: | ||
<math> | <math> | ||
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \, | \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})(\lambda + t_{0})} \,d \lambda = \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,d \lambda | ||
</math> | </math> | ||
Line 110: | Line 110: | ||
<math> | <math> | ||
\int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \, | \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } e^{-j2 \pi (f-f_{0})t_{0}} \,d \lambda = e^{-j2 \pi (f-f_{0})t_{0}} \left[ \int_{- \infty}^{\infty} g(\lambda )e^{-j2 \pi (f-f_{0})\lambda } \,d \lambda \right] | ||
</math> | </math> | ||
Revision as of 17:31, 8 November 2009
Some properties to choose from if you are having difficulty....
Max Woesner
1. Find
Recall , so
Also recall ,so
Now
So
reviewed by Joshua Sarris
2. Find
Recall
Similarly,
So
Now
Note that
Added step per Nick's suggestion
Substituting gives us
And
Since is a simply a dummy variable, we can conclude that:
"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"
Example:
Reviewed by Nick Christman
Nick Christman
Note: After scratching my head for a couple of hours, I decided that I would try a different Fourier Property. In fact, I chose a property that would need to be defined in order to show my second property.
1. Find
This is a fairly straightforward property and is known as complex modulation
Combining terms, we get:
Now let's make the following substitution
This now gives us a surprisingly familiar function:
This looks just like !
We can now conclude that:
PLEASE ENTER PEER REVIEW HERE
2. Find
-- Using the above definition of complex modulation and the definition from class of a time delay (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...
By definition we know that:
Rearranging terms we get:
Now lets make the substitution .
This leads us to:
After some simplification and rearranging terms, we get:
Rearranging the terms yet again, we get:
We know that the exponential in terms of is simply a constant and because of the Fourier Property of complex modualtion, we finally get:
Reviewed by Kevin Starkey --> add above... other than that it looks good.
Joshua Sarris
Find
Recall
,
so expanding we have,
Also recall ,
so we can convert to exponentials.
Now integrating gives us,
So we now have the identity,
or rather
Also reviewed by Nick Christman -- Looks good.
Kevin Starkey
1. Find
First we know that
We also know that
(+) Which gives us
Since is only non-zero at f = 0 this yeilds
So
Reviewed by Nick Christman
-- I fixed one typo (needed a minus sign in the exponential). I'm not sure about the step (+). I would like to believe it, but I'm just not sure that it works... if you are sure it works, maybe add a little comment to explain it a little better. Other than that, it looks good!
2. Find
First
or rearranging we get
Which leads to
So
PLEASE ENTER PEER REVIEW HERE