ASN2 - Something Interesting: Exponential: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
Line 20: Line 20:




x1(t) \!</math> '''.''' <math> cos({\frac{ 2 \pi mt}{T}}) = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n cos({\frac{ 2 \pi nt}{T}})cos{\frac{ 2 \pi mt}{T}} dt \!</math> At this point you should use a trig identity
<math> x1(t) \!</math> '''.''' <math> cos({\frac{ 2 \pi mt}{T}}) = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n cos({\frac{ 2 \pi nt}{T}})cos{\frac{ 2 \pi mt}{T}} dt \!</math> At this point you should use a trig identity


applying this trig identity gives
applying this trig identity gives


<math>\frac{1}{2}} \sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} cos({\frac{ j2 \pi (n-m)t}{T}})cos({\frac{ j2 \pi (n+m)t}{T}}) dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!</math>
<math>\frac{1}{2}} \sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} cos({\frac{ j2 \pi (n-m)t}{T}})cos({\frac{ j2 \pi (n+m)t}{T}}) dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!</math>

Revision as of 09:33, 3 December 2009

Back to my Home Page


Fourier Series

Using cosine to represent the basis functions x1(t)=n=0ancos(2πntT)

Using an exponential to represent basis functions x1(t)=n=0anej2πntT

To solve for the coefffients an the solutions for both are almost identical. The benefit of using the eponetialinstead of cosine is that mathematical it is simplier for solving.

To solve for the coefficients do the dot product ' . ' of the basis function and x(t)


x2(t) . ej2πmtT=T2T2n=0anej2πntTej2πmtTdt=n=0anT2T2ej2π(nm)tTdt=n=0anTδmn

am=T2T2x2(t)ej2πmtTdt


x1(t) . cos(2πmtT)=T2T2n=0ancos(2πntT)cos2πmtTdt At this point you should use a trig identity

applying this trig identity gives

Failed to parse (syntax error): {\displaystyle \frac{1}{2}} \sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} cos({\frac{ j2 \pi (n-m)t}{T}})cos({\frac{ j2 \pi (n+m)t}{T}}) dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!}