ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
Line 21: Line 21:


<math> x(t)=  \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt'  \!</math>
<math> x(t)=  \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt'  \!</math>


note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math>
note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math>


<math> x(t)=  \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt'  \!</math>
<math> x(t)=  \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt'  \!</math>
THE GAME  
 
                THE GAME  


LTI (Linear Time Invariant System)
LTI (Linear Time Invariant System)
Line 33: Line 32:
Input    LTI                      Output        Reason
Input    LTI                      Output        Reason


 
<math> x(t)\longrightarrow  \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt\!</math>
 
<math> X(f)\longrightarrow  \int_{-\infty} ^ {\infty} X(f')\delta_(f'-f) df'  \!</math>
 
<math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!</math>

Revision as of 13:55, 3 December 2009

Back to my Home Page


1/Tdf

n/Tf

n=1T()df


Can we make an unperiodic signal and make it periodic by taking the limit?

x(t)=limT1T(T2T2x(t)ej2πntTdt)ej2πntT

note that X(F)=[x(t)]T2T2x(t)ej2πntTdt

becomes as the limit is taken n/t becomes f x(t)=[x(t)ej2πftdt]ej2πftdf

x(t)=x(t)[ej2πf(tt)df]dt

note that the defination of the delta function is ej2πf(tt)df

x(t)=x(t)δ(tt)dt

               THE GAME 

LTI (Linear Time Invariant System)

Input LTI Output Reason

x(t)x(t)δ(tt)dt X(f)X(f)δ(ff)df