ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:


<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math>
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math>




note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math>
note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math>


<math> x(t)= \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math>
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math>

THE GAME
THE GAME


LTI (Linear Time Invariant System)
LTI (Linear Time Invariant System)
Line 33: Line 32:
Input LTI Output Reason
Input LTI Output Reason


<math> x(t)\longrightarrow \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math>

<math> X(f)\longrightarrow \int_{-\infty} ^ {\infty} X(f')\delta_(f'-f) df' \!</math>


<math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!</math>

Revision as of 12:55, 3 December 2009

Back to my Home Page



Can we make an unperiodic signal and make it periodic by taking the limit?

note that

becomes as the limit is taken n/t becomes f

note that the defination of the delta function is

               THE GAME 

LTI (Linear Time Invariant System)

Input LTI Output Reason