ASN2 - Something Interesting: Exponential: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
Line 14: Line 14:
To solve a Fourier series equation for the coefffients <math>  a_n \!</math> using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving. To find the coefficients perform the dot product ' '''.''' '  operation of the basis function with <math> x(t) \!</math>  
To solve a Fourier series equation for the coefffients <math>  a_n \!</math> using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving. To find the coefficients perform the dot product ' '''.''' '  operation of the basis function with <math> x(t) \!</math>  


Preffered method
Using exponential basis function


<math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n  \delta_{mn} \!</math>
<math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n  \delta_{mn} \!</math>
Line 22: Line 22:
<math>a_m=\int_{-\frac{T}{2}}^{\frac{T}{2}}x2(t)e^{\frac{ -j2 \pi mt}{T}} dt </math>
<math>a_m=\int_{-\frac{T}{2}}^{\frac{T}{2}}x2(t)e^{\frac{ -j2 \pi mt}{T}} dt </math>


Secondary method
Using cosine basis function


<math> x1(t) \!</math> '''.''' <math> cos({\frac{ 2 \pi mt}{T}}) = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n cos({\frac{ 2 \pi nt}{T}})cos{\frac{ 2 \pi mt}{T}} dt \!</math> At this point you should use a trig identity
<math> x1(t) \!</math> '''.''' <math> cos({\frac{ 2 \pi mt}{T}}) = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n cos({\frac{ 2 \pi nt}{T}})cos{\frac{ 2 \pi mt}{T}} dt \!</math> At this point you should use a trig identity

Revision as of 21:28, 13 December 2009

Back to my Home Page


Here's an demonstration of using the expontential function in a Fourier Series example.

One way of representing a basis function is with cosine cos(2πntT) . Where the Fourier series is x1(t)=n=0ancos(2πntT)

However, a more convient way is using an exponential funtion ej2πntT.

x2(t)=n=0anej2πntT

To solve a Fourier series equation for the coefffients an using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving. To find the coefficients perform the dot product ' . ' operation of the basis function with x(t)

Using exponential basis function

x2(t) . ej2πmtT=T2T2n=0anej2πntTej2πmtTdt=n=0anT2T2ej2π(nm)tTdt=n=0anδmn

Then result is

am=T2T2x2(t)ej2πmtTdt

Using cosine basis function

x1(t) . cos(2πmtT)=T2T2n=0ancos(2πntT)cos2πmtTdt At this point you should use a trig identity

applying this trig identity gives

12n=0anT2T2cos(j2π(nm)tT)cos(j2π(n+m)tT)dt=12n=0anTδmn

Then result is

am=T2T2x1(t)cos(2πmtT)dt