|
|
Line 9: |
Line 9: |
|
|
|
|
|
'''Answer''' |
|
'''Answer''' |
⚫ |
a)<math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt</math> |
|
|
|
|
|
|
|
a) |
⚫ |
Remember dummy variable <math> \lambda= t-t_0 \! </math> Then <math> s(\lambda)= s(t-t_0) \! </math> and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ G (f)- G(f_0) \,d\lambda \right] \! </math> |
|
|
|
|
|
⚫ |
Remember dummy variable <math> \lambda= t-t_0 \! </math> Then <math> s(\lambda)= s(t-t_0) = \mathcal{F}\left[ S (f)- S(f_0) \right] \! </math> and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda \! </math> |
|
|
|
|
⚫ |
<math>f_0=0 \!</math> where <math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt \! </math> |
Revision as of 18:54, 18 December 2009
Back to my home page
Problem Statement
6(a) Show . HINT:
6(b) If can you find in terms of ?
Answer
a)
Remember dummy variable Then and
where