Link title: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
a)
a)


Remember that dummy variable<math> \lambda</math> was used as a substitution such that <math> \lambda= t-t_0 \! </math>
Remember that dummy variable <math> \lambda \!</math> was used in substitution such that <math> \lambda= t-t_0 \! </math>


See then that <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \!
This means <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \!</math> In my notations <math>S(f_0)=S(f)|_{f=0 \!</math>


<math>f_0=0 \!</math> where <math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt \! </math>
The problem statement says let <math>f_0=0 \!</math> where <math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt \! </math>



<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math>
<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math>

Revision as of 20:15, 18 December 2009

Back to my home page


Problem Statement

6(a) Show .

6(b) If can you find in terms of ?

Answer

a)

Remember that dummy variable was used in substitution such that

This means In my notations Failed to parse (syntax error): {\displaystyle S(f_0)=S(f)|_{f=0 \!}

The problem statement says let where



</math> and


Therefore