ASN4 -Fourier Transform property: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
[[Jodi Hodge| Back to my home page]] |
[[Jodi Hodge| Back to my home page]] |
||
<math> |
Find the Fourier transform of <math> cos(2\pi f_0t)g(t)= \!</math> |
||
\mathcal{F}[cos(2\pi f_0t)g(t)]= |
|||
Using Euler's cosine identity |
Using Euler's cosine identity |
||
<math>\ |
<math> \mathcal{F}[cos(2\pi f_0t)g(t)]=\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt \!</math> |
||
<math> = \int_{-\infty}^{\infty} [\frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math> |
|||
<math> |
<math> = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math> |
||
<math> |
<math> = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}e^{-j2\pi ft} dt + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math> |
||
<math> |
<math> =\int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f-f_0)t}g(t)dt \ + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f+f_0)t}g(t)dt \!</math> |
||
Identifying that the above equation contains Fourier Transforms the solution is |
Identifying that the above equation contains Fourier Transforms the solution is |
Revision as of 10:07, 19 December 2009
Find the Fourier transform of
\mathcal{F}[cos(2\pi f_0t)g(t)]=
Using Euler's cosine identity
Identifying that the above equation contains Fourier Transforms the solution is