Homework: Sampling: A class review: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Rothsa (talk | contribs)
No edit summary
Rothsa (talk | contribs)
No edit summary
Line 11: Line 11:
|-
|-
|
|
|<math>= \sum_{k=-\infty}^{\infty} \mathcal{F} \left \{ x(t) \cdot e^{i 2 \pi k f_s t}  \right \} \ </math>
}
|-
|
|<math>= \sum_{k=-\infty}^{\infty} X(f - k f_s) \ </math>
|}


To make our job easier when dealing with discrete time based equations, it is helpful to have a
To make our job easier when dealing with discrete time based equations, it is helpful to have a

Revision as of 18:15, 22 October 2007

Sampling: A Class Review

A continuous function has an infinite amount of information stored on it - a continuous line has an infinite amount of points on it to document. So, the only way we can manipulate transforms on the computer is to quanticize them using the Fourier series.

Xs(f) def={xs(t)}=xs(t)ei2πftdt
={k=x(t)ei2πkfst}

}

To make our job easier when dealing with discrete time based equations, it is helpful to have a