HW 03: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and <math>x(t)= \sum _n a_n \phi_n (t)\,\!</math> and <math>y(t)= \sum _n b_n \phi_n (t)\,\!</math>, then show | If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and | ||
<math>x(t)= \sum _n a_n \phi_n (t)\,\!</math> and | |||
<math>y(t)= \sum _n b_n \phi_n (t)\,\!</math>, then show | |||
#<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math> | #<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math> | ||
#<math> \left \langle x | x \right \rangle = \sum_n \left | a_n \right |^2</math> | #<math> \left \langle x | x \right \rangle = \sum_n \left | a_n \right |^2</math> | ||
==Notes== | ==Notes== | ||
<math> \left \langle x | y \right \rangle = \int_{-\infty}^{\infty}x(t)y(t)^*\,dt</math> | <math> \left \langle x | y \right \rangle = \int_{-\infty}^{\infty}x(t)y(t)^*\,dt</math> | ||
*This notation is called the Bra <math> \langle\phi| </math> Ket <math>|\psi\rangle</math>, or Dirac notation. It denotes the inner product. | *This notation is called the Bra <math> \langle\phi| </math> Ket <math>|\psi\rangle</math>, or Dirac notation. It denotes the inner product. | ||
==Solution== | |||
#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \left ( \sum _n b_n \phi_n (t) \right )^*\,dt</math> | |||
#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \left ( \sum _n a_n \phi_n (t) \right )^*\,dt</math> |
Revision as of 15:48, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.