HW 03: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
No edit summary
Fonggr (talk | contribs)
No edit summary
Line 12: Line 12:


==Solution==
==Solution==
#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \left ( \sum _n b_n \phi_n (t) \right )^*\,dt</math>
{| border="0" cellpadding="0" cellspacing="0"
#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \left ( \sum _n a_n \phi_n (t) \right )^*\,dt</math>
|-
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _n b_n \phi_n (t)^* \,dt</math>
|<math>=\sum_n a_n b_n \int_{-\infty}^{\infty} \phi_n (t) \phi_n (t)^* \,dt</math>
|-
|
|<math>=\sum_n a_n b_n \left \langle \phi_n (t) | \phi_n (t)^* \right \rangle</math>
|-
|
|<math>=\sum_n a_n b_n \delta_{nn^*}</math>
|}
 
 
#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _n a_n \phi_n (t)^* \,dt</math>

Revision as of 16:16, 12 November 2008

Problem

If ϕn|ϕm=δmn and ϕn span the space of functions for which x(t) and y(t) are members and x(t)=nanϕn(t) and y(t)=nbnϕn(t), then show

  1. x|y=nanbn*
  2. x|x=n|an|2

Notes

x|y=x(t)y(t)*dt

  • This notation is called the Bra ϕ| Ket |ψ, or Dirac notation. It denotes the inner product.

Solution

nanϕn(t)nbnϕn(t)*dt =nanbnϕn(t)ϕn(t)*dt
=nanbnϕn(t)|ϕn(t)*
=nanbnδnn*


  1. nanϕn(t)nanϕn(t)*dt