HW 03: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
==Solution== | ==Solution== | ||
{| border="0" cellpadding="0" cellspacing="0" | |||
#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) | |- | ||
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _n b_n \phi_n (t)^* \,dt</math> | |||
|<math>=\sum_n a_n b_n \int_{-\infty}^{\infty} \phi_n (t) \phi_n (t)^* \,dt</math> | |||
|- | |||
| | |||
|<math>=\sum_n a_n b_n \left \langle \phi_n (t) | \phi_n (t)^* \right \rangle</math> | |||
|- | |||
| | |||
|<math>=\sum_n a_n b_n \delta_{nn^*}</math> | |||
|} | |||
#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _n a_n \phi_n (t)^* \,dt</math> |
Revision as of 16:16, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.
Solution