HW 03: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 30: | Line 30: | ||
{| border="0" cellpadding="0" cellspacing="0" | {| border="0" cellpadding="0" cellspacing="0" | ||
|- | |- | ||
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum | |<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _n a_n \phi_n (t)^* \,dt</math> | ||
|<math>=\sum_n \sum | |<math>=\sum_n \sum _n a_n a_n^* \int_{-\infty}^{\infty} \phi_n (t) \phi_n (t)^* \,dt</math> | ||
|- | |- | ||
| | | | ||
|<math>=\sum_n | |<math>=\sum_n a_n a_n^* \left \langle \phi_n (t) | \phi_n (t)^* \right \rangle</math> | ||
|- | |- | ||
| | | | ||
|<math>=\sum_n | |<math>=\sum_n a_n a_n^* \delta_{nn^*}</math> | ||
|- | |- | ||
| | | | ||
|<math>=\sum_n a_n | |<math>=\sum_n \left | a_n \right |^2</math> | ||
|} | |} |
Revision as of 16:31, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.
Solution