HW 03: Difference between revisions
Jump to navigation
Jump to search
Line 18: | Line 18: | ||
|- | |- | ||
| | | | ||
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t) | |<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math> | ||
|- | |- | ||
| | | | ||
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm | |<math>=\sum_n \sum _m a_n b_m^* \delta_{nm}</math> | ||
|- | |- | ||
| | | | ||
|<math>=\sum_n a_n b_n^*</math> | |<math>=\sum_n a_n b_n^*</math> | ||
|} | |} | ||
{| border="0" cellpadding="0" cellspacing="0" | {| border="0" cellpadding="0" cellspacing="0" | ||
Line 34: | Line 33: | ||
|- | |- | ||
| | | | ||
|<math>=\sum_n \sum _m a_n a_m^* \left \langle \phi_n (t) | \phi_m (t) | |<math>=\sum_n \sum _m a_n a_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math> | ||
|- | |- | ||
| | | |
Latest revision as of 18:27, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.