Fall 2009/JonathanS: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 23: Line 23:
:<math>\mathcal{L}\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math>
:<math>\mathcal{L}\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math>
:<math>\Rightarrow</math> <math> s^2\theta(s)-s\theta(0)-\theta^{ '}(0)+{19.62}\theta=0 \,</math>
:<math>\Rightarrow</math> <math> s^2\theta(s)-s\theta(0)-\theta^{ '}(0)+{19.62}\theta=0 \,</math>


Since we know that <math>\theta(0)=12^o</math> and the initial velocity <math>\theta^{ '}(0)=0</math> we get
:<math>s^2</math>

Revision as of 10:00, 23 October 2009

Problem

A simple pendulum with a length L = 0.5m is pulled back and released from an initial angle . Find it's location at t = 3s.

Solution

Assuming no damping and a small angle(), the equation for the motion of a simple pendulum can be written as


Substituting values we get


Remember the identities


Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with


Since we know that and the initial velocity we get