Fall 2009/JonathanS: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 11: Line 11:
Substituting values we get
Substituting values we get
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{9.81\over 0.5}\theta=0.</math>
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{9.81\over 0.5}\theta=0.</math>
:<math>\Rightarrow{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta=0.</math>
:<math>\Rightarrow{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta=0.</math>


Line 22: Line 23:
Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with
Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with
:<math>\mathcal{L}\bigg\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\bigg\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math>
:<math>\mathcal{L}\bigg\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\bigg\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math>
:<math>\Rightarrow</math>  <math> s^2\boldsymbol{\theta}-s\theta(0)-\theta^{ '}(0)+{19.62}\boldsymbol{\theta}=0 \,</math>
:<math>\Rightarrow</math>  <math> s^2\boldsymbol{\theta}-s\theta(0)-\theta^{ '}(0)+{19.62}\boldsymbol{\theta}=0 \,</math>


Line 27: Line 29:
Since we know that <math>\theta(0)=12^o</math> and the initial velocity <math>\theta^{ '}(0)=0</math> we get
Since we know that <math>\theta(0)=12^o</math> and the initial velocity <math>\theta^{ '}(0)=0</math> we get
:<math>s^2\boldsymbol{\theta}-12s+19.62\boldsymbol{\theta}=0 \,</math>
:<math>s^2\boldsymbol{\theta}-12s+19.62\boldsymbol{\theta}=0 \,</math>
:<math>\Rightarrow</math>  <math>\boldsymbol{\theta}(s^2+19.62)=12s \,</math>
:<math>\Rightarrow</math>  <math>\boldsymbol{\theta}(s^2+19.62)=12s \,</math>
:<math>\Rightarrow</math>  <math>\boldsymbol{\theta}={12s\over {s^2+19.62}}</math>
:<math>\Rightarrow</math>  <math>\boldsymbol{\theta}={12s\over {s^2+19.62}}</math>

Revision as of 14:09, 23 October 2009

Problem

A simple pendulum with a length L = 0.5m is pulled back and released from an initial angle θ0=12o. Find it's location at t = 3s.

Solution

Assuming no damping and a small angle(θ<15o), the equation for the motion of a simple pendulum can be written as

d2θdt2+gθ=0.


Substituting values we get

d2θdt2+9.810.5θ=0.
d2θdt2+19.62θ=0.


Remember the identities

{f(t)}=F(s)=0estf(t)dt.
{f'(t)}=s2F(s)sf(0)f'(0)


Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with

{d2θdt2+19.62θ}=s2F(s)sf(0)f'(0)+19.62θ=0
s2θsθ(0)θ'(0)+19.62θ=0


Since we know that θ(0)=12o and the initial velocity θ'(0)=0 we get

s2θ12s+19.62θ=0
θ(s2+19.62)=12s
θ=12ss2+19.62