Fall 2009/JonathanS: Difference between revisions
Jump to navigation
Jump to search
Line 12: | Line 12: | ||
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{9.81\over 0.5}\theta=0.</math> |
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{9.81\over 0.5}\theta=0.</math> |
||
<math>\Rightarrow{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta=0.</math> |
|||
Line 24: | Line 24: | ||
:<math>\mathcal{L}\bigg\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\bigg\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math> |
:<math>\mathcal{L}\bigg\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\bigg\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math> |
||
<math>\Rightarrow</math> <math> s^2\boldsymbol{\theta}-s\theta(0)-\theta^{ '}(0)+{19.62}\boldsymbol{\theta}=0 \,</math> |
|||
Line 30: | Line 30: | ||
:<math>s^2\boldsymbol{\theta}-12s+19.62\boldsymbol{\theta}=0 \,</math> |
:<math>s^2\boldsymbol{\theta}-12s+19.62\boldsymbol{\theta}=0 \,</math> |
||
<math>\Rightarrow</math> <math>\boldsymbol{\theta}(s^2+19.62)=12s \,</math> |
|||
<math>\Rightarrow</math> <math>\boldsymbol{\theta}={12s\over {s^2+19.62}}</math> |
Revision as of 13:18, 23 October 2009
Problem
A simple pendulum with a length L = 0.5m is pulled back and released from an initial angle . Find it's location at t = 3s.
Solution
Assuming no damping and a small angle(), the equation for the motion of a simple pendulum can be written as
Substituting values we get
Remember the identities
Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with
Since we know that and the initial velocity we get