Fall 2009/JonathanS: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
== Problem ==
== Problem ==


A simple pendulum with a length L = 0.5m is pulled back and released from an initial angle <math>\theta_0 = 12^o</math>. Find an equation that gives the angle of the pendulum at any given time '''t'''.
A simple pendulum with a length L = 0.5m is pulled back and released from an initial angle <math>\theta_0 = 12^o</math>. Then it is run with a forcing function of cos(3<math>\theta</math>) Find an equation that gives the angle of the pendulum at any given time '''t'''.


== Solution ==
== Solution ==


Assuming no damping and a small angle(<math>\theta < 15^o</math>), the equation for the motion of a simple pendulum can be written as
Assuming no damping and a small angle(<math>\theta < 15^o</math>), the equation for the motion of a simple pendulum can be written as
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{g\over \ell}\theta=0.</math>
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{g\over \ell}\theta=cos(3\theta).</math>




Substituting values we get
Substituting values we get
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{9.81\over 0.5}\theta=0.</math>
:<math>{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{9.81\over 0.5}\theta=cos(3\theta).</math>


<math>\Rightarrow{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta=0.</math>
<math>\Rightarrow{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta=cos(3\theta).</math>




Line 22: Line 22:


Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with
Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with
:<math>\mathcal{L}\bigg\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\bigg\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=0</math>
:<math>\mathcal{L}\bigg\{{\mathrm{d}^2\theta\over \mathrm{d}t^2}+{19.62}\theta\bigg\}=s^2F(s)-sf(0)-f^{ '}(0)+{19.62}\theta=\mathcal{L}\{cos(3\theta)\}</math>


<math>\Rightarrow</math>  <math> s^2\boldsymbol{\theta}-s\theta(0)-\theta^{ '}(0)+{19.62}\boldsymbol{\theta}=0 \,</math>
<math>\Rightarrow</math>  <math> s^2\boldsymbol{\theta}-s\theta(0)-\theta^{ '}(0)+{19.62}\boldsymbol{\theta}={s\over {s^2+1}} \,</math>




Since we know that <math>\theta(0)=12^o</math> and the initial velocity <math>\theta^{ '}(0)=0</math> we get
Since we know that <math>\theta(0)=12^o</math> and the initial velocity <math>\theta^{ '}(0)=0</math> we get
:<math>s^2\boldsymbol{\theta}-12s+19.62\boldsymbol{\theta}=0 \,</math>
:<math>s^2\boldsymbol{\theta}-12s+19.62\boldsymbol{\theta}={s\over {s^2+1}} \,</math>


<math>\Rightarrow</math>  <math>\boldsymbol{\theta}(s^2+19.62)=12s \,</math>
<math>\Rightarrow</math>  <math>\boldsymbol{\theta}(s^2+19.62)={s\over {s^2+1}}+12s \,</math>


<math>\Rightarrow</math>  <math>\boldsymbol{\theta}={12s\over {s^2+19.62}}</math>
<math>\Rightarrow</math>  <math>\boldsymbol{\theta}(s^2+19.62)={s\over {s^2+1}}+{12s(s^2+1)\over {s^2+1}} \,</math>


<math>\Rightarrow</math>  <math>\boldsymbol{\theta}={12s\over {s^2+(4.429)^2}}</math>
<math>\Rightarrow</math>  <math>\boldsymbol{\theta}(s^2+19.62)={s(12s^2+13)\over {s^2+1}} \,</math>
 
<math>\Rightarrow</math>  <math>\boldsymbol{\theta}={s(12s^2+13)\over {(s^2+19.62)(s^2+1)}}</math>





Revision as of 11:56, 28 October 2009

Problem

A simple pendulum with a length L = 0.5m is pulled back and released from an initial angle θ0=12o. Then it is run with a forcing function of cos(3θ) Find an equation that gives the angle of the pendulum at any given time t.

Solution

Assuming no damping and a small angle(θ<15o), the equation for the motion of a simple pendulum can be written as

d2θdt2+gθ=cos(3θ).


Substituting values we get

d2θdt2+9.810.5θ=cos(3θ).

d2θdt2+19.62θ=cos(3θ).


Remember the identities

{f(t)}=F(s)=0estf(t)dt.
{f'(t)}=s2F(s)sf(0)f'(0)


Now we can take the Laplace Transform to change the second order differential equation, from the t domain, into a simple linear equation, from the s domain, that's much easier to work with

{d2θdt2+19.62θ}=s2F(s)sf(0)f'(0)+19.62θ={cos(3θ)}

s2θsθ(0)θ'(0)+19.62θ=ss2+1


Since we know that θ(0)=12o and the initial velocity θ'(0)=0 we get

s2θ12s+19.62θ=ss2+1

θ(s2+19.62)=ss2+1+12s

θ(s2+19.62)=ss2+1+12s(s2+1)s2+1

θ(s2+19.62)=s(12s2+13)s2+1

θ=s(12s2+13)(s2+19.62)(s2+1)


Now we can take the inverse Laplace Transform to convert our equation back into the time domain using the identity

1{ss2+ω2}=cos(ωt)

We get

1{12ss2+(4.429)2}=12cos(4.429t)


This will give us the angle (in degrees) of the pendulum at any given time t.


Initial Value Theorem

We can use the Initial Value Theorem as a check that our initial values for the problem are valid.

{f'(t)}=sF(s)f(0)=0f'(t)estdt
limn{f'(t)}=limnsF(s)f(0)=limnsF(s)f(0)=0=limnsF(s)=f(0)

Below we will use this theorem to check the values for our problem.

limn{f'(t)}=limnsF(s)f(0)=limn0f'(t)estdt=limns(12ss2+(4.429)2)f(0)=0=limns(12ss2+(4.429)2)=f(0)12=f(0)

This value f(0)=12 is the initial angle we gave the pendulum so it checks out.

Final Value Theorem

We can use the Final Value Theorem as a check that our final values for the problem are valid.

{f'(t)}=sF(s)f()=0f'(t)estdt
limn0{f'(t)}=limn0sF(s)f()=limn0sF(s)f()=0=limn0sF(s)=f()

Below we will use this theorem to check the values for our problem.

limn0{f'(t)}=limn0sF(s)f()=limn00f'(t)estdt=limn0s(12ss2+(4.429)2)f()=0=limn0s(12ss2+(4.429)2)=f()0=f()

This is zero because the average angle as time goes to infinity will be zero (halfway between -12 and 12 degrees).

Bode Plot