ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:


<math>x(t)= \lim_{T\to \infty \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T} dt' )e^{\frac{ j2 \pi nt}{T} </math>
<math>x(t)= \lim_{T\to \infty \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T} dt' )e^{\frac{ j2 \pi nt}{T} </math>
note that f replaced with n/t and that<math> X(F)= \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T} dt' </math>
note that f replaced with n/t and that<math> X(F)=mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T} dt' \!</math>
<math> X(F)=mathcal{F}[x(t)]\!<math>
'''THE GAME'''
'''THE GAME'''



Revision as of 12:11, 3 December 2009

Back to my Home Page



Can we make an unperiodic signal and make it periodic by taking the limit?

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)= \lim_{T\to \infty \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T} dt' )e^{\frac{ j2 \pi nt}{T} } note that f replaced with n/t and thatFailed to parse (syntax error): {\displaystyle X(F)=mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T} dt' \!} .