ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
Can we make an unperiodic signal and make it periodic by taking the limit?
Can we make an unperiodic signal and make it periodic by taking the limit?


<math>x(t)= \lim_{T\to \infty \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T} dt' )e^{\frac{ j2 \pi nt}{T} \!</math>
<math> x(t)= \lim_{T\to \infty \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T}} dt' )e^{\frac{ j2 \pi nt}{T}} \!</math>


note that f replaced with n/t and that
note that f replaced with n/t and that
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T} dt' \!</math>
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T}} dt' \!</math>


<math> X(F)=\mathcal{F}[x(t)]\!<math>
<math> X(F)=\mathcal{F}[x(t)]\!<math>

Revision as of 12:30, 3 December 2009

Back to my Home Page



Can we make an unperiodic signal and make it periodic by taking the limit?

Failed to parse (syntax error): {\displaystyle x(t)= \lim_{T\to \infty \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T}} dt' )e^{\frac{ j2 \pi nt}{T}} \!}

note that f replaced with n/t and that

.