ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
Line 7: Line 7:
<math> n/T        \longrightarrow f </math>  
<math> n/T        \longrightarrow f </math>  
                
                
<math> \sum_{n=-\infty}^\infty  \frac{1}{T}\longrightarrow  \int_{-\infty] ^ \infty }(  )df \! </math>
<math> \sum_{n=-\infty}^\infty  \frac{1}{T}\longrightarrow  \int_{-\infty} ^ {\infty }(  )df \! </math>




Line 18: Line 18:


becomes as the limit is taken n/t becomes f
becomes as the limit is taken n/t becomes f
<math> x(t)=  \int_{-\infty ^ \infty} x(t')e^{ j2 \pi ft'} dt' e^{\frac{ j2 \pi ft}df \!</math>
<math> x(t)=  \int_{-\infty} ^ {\infty} x(t')e^{ j2 \pi ft'} dt' e^{\frac{ j2 \pi ft}df \!</math>





Revision as of 13:41, 3 December 2009

Back to my Home Page


1/Tdf

n/Tf

n=1T()df


Can we make an unperiodic signal and make it periodic by taking the limit?

x(t)=limT1T(T2T2x(t)ej2πntTdt)ej2πntT

note that X(F)=[x(t)]T2T2x(t)ej2πntTdt

becomes as the limit is taken n/t becomes f Failed to parse (syntax error): {\displaystyle x(t)= \int_{-\infty} ^ {\infty} x(t')e^{ j2 \pi ft'} dt' e^{\frac{ j2 \pi ft}df \!}


THE GAME

LTI (Linear Time Invariant System)

Input LTI Output Reason



x2(t) . ej2πmtT=T2T2n=0anej2πntTej2πmtTdt=n=0anT2T2ej2π(nm)tTdt=n=0anTδmn