ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
Can we make an unperiodic signal and make it periodic by taking the limit?
Can we make an unperiodic signal and make it periodic by taking the limit?


<math> x(t)= \lim_{T\to \infty} \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T}} dt' )e^{\frac{ j2 \pi nt}{T}} \!</math>
<math> x(t)= \lim_{T\to \infty} \frac {1}{T} (\int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' )e^{\frac{ j2 \pi nt}{T}} \!</math>


note that
note that
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ j2 \pi nt'}{T}} dt' \!</math>
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' \!</math>


becomes as the limit is taken n/t becomes f
becomes as the limit is taken n/t becomes f
<math> x(t)= \int_{-\infty} ^ {\infty} (\int_{-\infty} ^ {\infty} x(t')e^{ j2 \pi ft'} dt') e^{ j2 \pi ft}df \!</math>
<math> x(t)= \int_{-\infty} ^ {\infty} [\int_{-\infty} ^ {\infty} x(t')e^{ -j2 \pi ft'} dt'] e^{ j2 \pi ft}df \!</math>



<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math>


THE GAME
THE GAME

Revision as of 12:47, 3 December 2009

Back to my Home Page



Can we make an unperiodic signal and make it periodic by taking the limit?

note that

becomes as the limit is taken n/t becomes f

THE GAME

LTI (Linear Time Invariant System)

Input LTI Output Reason



.