ASN3 - Class Notes October 5: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
Line 21: | Line 21: | ||
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math> |
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math> |
||
note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math> |
note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math> |
||
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math> |
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math> |
||
THE GAME |
|||
THE GAME |
|||
LTI (Linear Time Invariant System) |
LTI (Linear Time Invariant System) |
||
Line 33: | Line 32: | ||
Input LTI Output Reason |
Input LTI Output Reason |
||
<math> x(t)\longrightarrow \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math> |
|||
<math> X(f)\longrightarrow \int_{-\infty} ^ {\infty} X(f')\delta_(f'-f) df' \!</math> |
|||
<math> x2(t) \!</math> '''.''' <math> e^{\frac{ -j2 \pi mt}{T}} = \int_{-\frac{T}{2}}^{\frac{T}{2}}\sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}}e^{\frac{ -j2 \pi mt}{T}} dt =\sum_{n=0}^\infty a_n \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{\frac{ j2 \pi (n-m)t}{T}} dt =\sum_{n=0}^\infty a_n T \delta_{mn} \!</math> |
Revision as of 12:55, 3 December 2009
Can we make an unperiodic signal and make it periodic by taking the limit?
note that
becomes as the limit is taken n/t becomes f
note that the defination of the delta function is
THE GAME
LTI (Linear Time Invariant System)
Input LTI Output Reason