ASN3 - Class Notes October 5: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
Line 21: | Line 21: | ||
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math> | <math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math> | ||
note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math> | note that the defination of the delta function is <math>\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df \!</math> | ||
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math> | <math> x(t)= \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math> | ||
THE GAME | |||
THE GAME | |||
LTI (Linear Time Invariant System) | LTI (Linear Time Invariant System) | ||
Line 33: | Line 32: | ||
Input LTI Output Reason | Input LTI Output Reason | ||
<math> x(t)\longrightarrow \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt' \!</math> | |||
<math> X(f)\longrightarrow \int_{-\infty} ^ {\infty} X(f')\delta_(f'-f) df' \!</math> | |||
<math> |
Revision as of 13:55, 3 December 2009
Can we make an unperiodic signal and make it periodic by taking the limit?
note that
becomes as the limit is taken n/t becomes f
note that the defination of the delta function is
THE GAME
LTI (Linear Time Invariant System)
Input LTI Output Reason