ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
Line 26: Line 26:
<math> x(t)=  \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt'  \!</math>
<math> x(t)=  \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt'  \!</math>


<math>                       THE GAME </math>
                       THE GAME


<math>              LTI (Linear Time Invariant System) </math>
            LTI (Linear Time Invariant System)  


<math> Input    LTI                            Output                                  Reason</math>
Input    LTI                            Output                                  Reason


<math> x(t)\longrightarrow  \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt'  \!</math>  Superposition
<math> x(t)\longrightarrow  \int_{-\infty} ^ {\infty} x(t')\delta_(t'-t) dt'  \!</math>  Superposition
<math> X(f)\longrightarrow  \int_{-\infty} ^ {\infty} X(f')\delta_(f'-f) df'  \!</math>      "
<math> X(f)\longrightarrow  \int_{-\infty} ^ {\infty} X(f')\delta_(f'-f) df'  \!</math>      "

Revision as of 13:59, 3 December 2009

Back to my Home Page


1/Tdf

n/Tf

n=1T()df


Can we make an unperiodic signal and make it periodic by taking the limit?

x(t)=limT1T(T2T2x(t)ej2πntTdt)ej2πntT

note that X(F)=[x(t)]T2T2x(t)ej2πntTdt

becomes as the limit is taken n/t becomes f x(t)=[x(t)ej2πftdt]ej2πftdf

x(t)=x(t)[ej2πf(tt)df]dt

note that the defination of the delta function is ej2πf(tt)df

x(t)=x(t)δ(tt)dt

                     THE GAME
            LTI (Linear Time Invariant System) 
Input     LTI                             Output                                  Reason

x(t)x(t)δ(tt)dt Superposition X(f)X(f)δ(ff)df "