ASN2 - Something Interesting: Exponential: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
<math> x2(t)= \sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}} \!</math>
<math> x2(t)= \sum_{n=0}^\infty a_n e^{\frac{ j2 \pi nt}{T}} \!</math>


To solve a Fourier series equation for the coefffients <math> a_n \!</math> using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving.
To solve a Fourier series equation for the coefffients <math> a_n \!</math> using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving. To find the coefficients perform the dot product ' '''.''' ' operation of the basis function with <math> x(t) \!</math>

To find the coefficients perform the dot product ' '''.''' ' operation of the basis function with <math> x(t) \!</math>


Preffered method
Preffered method

Revision as of 20:27, 13 December 2009

Back to my Home Page


Here's an demonstration of using the expontential function in a Fourier Series example.

One way of representing a basis function is with cosine . Where the Fourier series is

However, a more convient way is using an exponential funtion .

To solve a Fourier series equation for the coefffients using the above expressions result in similar solutions but using the eponetial basis function is simplier to solving. To find the coefficients perform the dot product ' . ' operation of the basis function with

Preffered method

.

Then result is

Secondary method

. At this point you should use a trig identity

applying this trig identity gives

Then result is