ASN4 fixing: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
Line 6: Line 6:


Note that
Note that
<math> (|s(t)|)^2 = \frac {s(t)^.s^*(t)}{2} </math>
<math> (|s(t)|)^2 = \frac {s(t)^.s^*(t)}{2} \!</math>


and  also that  
and  also that  


<math> s(t)= F ^{-1}[S(f)]=\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} df  </math>
<math> s(t)= F ^{-1}[S(f)]=\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} df  \!</math>


Therefore
Therefore
Line 16: Line 16:
<math> (|s(t)|)^2 = \frac {1}{2}\int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f t} df df</math>
<math> (|s(t)|)^2 = \frac {1}{2}\int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f t} df df</math>


Note that <math> |e^{j 2 \pi f t}|= \sqrt{cos^2(2 \pi f t) + sin^2(2 \pi f t)}=1 </math>
Note that  


The above equation of <math>|s(t)|</math> simplifies to then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df= |S(f)|</math>
The above equation of <math>|s(t)|</math> simplifies to then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df= |S(f)|</math>


Therefore,squaring the function and intergrating it in the time domain <math>\int_{- \infty}^{\infty} (|s(t)|)^2 dt</math> is to do the same in the frequency domain <math>\int_{- \infty}^{\infty} (|S(f)|)^2 df</math>
Therefore,squaring the function and intergrating it in the time domain <math>\int_{- \infty}^{\infty} (|s(t)|)^2 dt</math> is to do the same in the frequency domain <math>\int_{- \infty}^{\infty} (|S(f)|)^2 df</math>

Revision as of 23:02, 13 December 2009

back to my home page

Parseval's Theorem

Parseval's Theorem says that (|s(t)|)2dt in time transforms to (|S(f)|)2df in frequency

Note that (|s(t)|)2=s(t).s*(t)2

and also that

s(t)=F1[S(f)]=S(f)ej2πftdf

Therefore

(|s(t)|)2=12S(f)ej2πftS(f)ej2πftdfdf

Note that

The above equation of |s(t)| simplifies to then |s(t)|=S(f)df=|S(f)|

Therefore,squaring the function and intergrating it in the time domain (|s(t)|)2dt is to do the same in the frequency domain (|S(f)|)2df