ASN6 a,b- fixing: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
Line 4: | Line 4: | ||
'''Problem Statement''' |
'''Problem Statement''' |
||
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>. |
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>. Hint: <math> S(0) = S(f) \vert _{_{f=0}} = \int_{- \infty}^{\infty} s(t)e^{-j2 \pi (f \rightarrow 0)t} \,dt = \int_{- \infty}^{\infty} s(t) \,dt </math> |
||
6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>? |
6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>? |
||
Line 17: | Line 17: | ||
<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math> |
<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math> |
||
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,d\lambda \! </math> |
|||
<math> \mathcal{F}\left[ S (f)- S(f_0) \right] = \int_{- \infty}^{t}e^{-j2 \pi f t}\int_{- \infty}^{\infty} S(f)e^{-j2 \pi f t}\,df = \frac{ e^{-j2 \pi f t}} {-j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df </math> |
Revision as of 19:19, 18 December 2009
Problem Statement
6(a) Show . Hint:
6(b) If can you find in terms of ?
Answer
a)
Remember dummy variable Then and
where