ASN6 a,b- fixing: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
Line 19: | Line 19: | ||
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \, |
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math> |
||
<math> \mathcal{F}\left[ S (f)- S(f_0) \right] = \int_{- \infty}^{t} e^{-j2 \pi f t}\int_{- \infty}^{\infty} S(f) |
<math> \mathcal{F}\left[ S (f)- S(f_0) \right] = \int_{- \infty}^{t} e^{-j2 \pi f t} \,dt \int_{- \infty}^{\infty} S(f)\,df = \frac{ e^{-j2 \pi f t}} {-j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\infty}^{\infty} S(f)\frac{ e^{-j2 \pi f t}} {-j2 \pi f }\,df </math> |
Revision as of 19:39, 18 December 2009
Problem Statement
6(a) Show . Hint:
6(b) If can you find in terms of ?
Answer
a)
Remember dummy variable Then and
where
Failed to parse (syntax error): {\displaystyle \mathcal{F}\left[ S (f)- S(f_0) \right] = \int_{- \infty}^{t} e^{-j2 \pi f t} \,dt \int_{- \infty}^{\infty} S(f)\,df = \frac{ e^{-j2 \pi f t}} {-j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\infty}^{\infty} S(f)\frac{ e^{-j2 \pi f t}} {-j2 \pi f }\,df }