Link title: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
Line 12: | Line 12: | ||
a)Remember that dummy variable <math> \lambda \!</math> was used in substitution such that <math> \lambda= t-t_0 \! </math> |
a)Remember that dummy variable <math> \lambda \!</math> was used in substitution such that <math> \lambda= t-t_0 \! </math> |
||
Then <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \!</math> |
|||
⚫ | |||
In the problemstatement it says to make <math>S(f_0)=0 \!</math> |
|||
⚫ | |||
The problem statement says to make <math>S(f_0)=0 \!</math> that makes the above equation simplify to |
|||
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math> |
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math> |
Revision as of 20:40, 18 December 2009
Problem Statement
6(a) Show .
6(b) If can you find in terms of ?
Answer
a)Remember that dummy variable was used in substitution such that
Then
and
The problem statement says to make that makes the above equation simplify to
Therefore
In my notations Failed to parse (syntax error): {\displaystyle S(f_0)=S(f)|_{f=0 \!}
The problem statement says let where