ASN4 -Fourier Transform property: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
Line 4: | Line 4: | ||
Using Euler's cosine identity |
Using Euler's cosine identity |
||
<math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math> |
<math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math> |
||
<math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}e^{-j2\pi ft} dt + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math> |
<math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}e^{-j2\pi ft} dt + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math> |
||
<math> \ |
<math> \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt =\int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f-f_0)t}g(t)dt \ + \ \frac{1}{2}\int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f+f_0)t}g(t)dt \!</math> |
||
Identifying that the above equation contains Fourier Transforms the solution is |
Identifying that the above equation contains Fourier Transforms the solution is |
Revision as of 23:02, 18 December 2009
Using Euler's cosine identity
Identifying that the above equation contains Fourier Transforms the solution is