ASN4 -Fourier Transform property: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
[[Jodi Hodge| Back to my home page]] | [[Jodi Hodge| Back to my home page]] | ||
<math> | Find the Fourier transform of <math> cos(2\pi f_0t)g(t)= \!</math> | ||
\mathcal{F}[cos(2\pi f_0t)g(t)]= | |||
Using Euler's cosine identity | Using Euler's cosine identity | ||
<math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} [\frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math> | <math> \mathcal{F}[cos(2\pi f_0t)g(t)]=\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt \!</math> | ||
<math> = \int_{-\infty}^{\infty} [\frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math> | |||
<math> | <math> = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}+\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math> | ||
<math> | <math> = \int_{-\infty}^{\infty} \frac{1}{2}e^{j2\pi f_0t}e^{-j2\pi ft} dt + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi f_0t}g(t)e^{-j2\pi ft}dt\!</math> | ||
<math> | <math> =\int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f-f_0)t}g(t)dt \ + \int_{-\infty}^{\infty}\frac{1}{2}e^{-j2\pi (f+f_0)t}g(t)dt \!</math> | ||
Identifying that the above equation contains Fourier Transforms the solution is | Identifying that the above equation contains Fourier Transforms the solution is | ||
<math>\mathcal{F}[cos(2\pi f_0t)g(t)] = \frac{1}{2}G(f-f_0)+ \frac{1}{2}[G(f+f_0)\!</math> | <math>\mathcal{F}[cos(2\pi f_0t)g(t)] = \frac{1}{2}G(f-f_0)+ \frac{1}{2}[G(f+f_0)\!</math> |
Revision as of 11:07, 19 December 2009
Find the Fourier transform of
\mathcal{F}[cos(2\pi f_0t)g(t)]=
Using Euler's cosine identity
Identifying that the above equation contains Fourier Transforms the solution is