Back to my home page
Problem Statement
6(a) Show . Hint:
6(b) If can you find in terms of ?
Answer
a)
Remember dummy variable Then and
where
Failed to parse (syntax error): {\displaystyle \mathcal{F}\left[ S (f)- S(f_0) \right] = \int_{- \infty}^{t} e^{-j2 \pi f t} \,dt \int_{- \infty}^{\infty} S(f)\,df = \frac{ e^{-j2 \pi f t}} {-j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\infty}^{\infty} S(f)\frac{ e^{-j2 \pi f t}} {-j2 \pi f }\,df }