Back to my home page
ℱ[cos(2πf0t)g(t)]=∫−∞∞cos(2πf0t)g(t)e−j2πftdt
Using Euler's cosine identity
∫−∞∞cos(2πf0t)g(t)e−j2πftdt=∫−∞∞[12ej2πf0t+12e−j2πf0t]g(t)e−j2πftdt
∫−∞∞cos(2πf0t)g(t)e−j2πftdt=∫−∞∞12ej2πf0t+12e−j2πf0tg(t)e−j2πftdt
∫−∞∞cos(2πf0t)g(t)e−j2πftdt=∫−∞∞12ej2πf0te−j2πftdt+∫−∞∞12e−j2πf0tg(t)e−j2πftdt
∫−∞∞cos(2πf0t)g(t)e−j2πftdt=∫−∞∞12e−j2π(f−f0)tg(t)dt+12∫−∞∞12e−j2π(f+f0)tg(t)dt
Identifying that the above equation contains Fourier Transforms the solution is
ℱ[cos(2πf0t)g(t)]=12G(f−f0)+12[G(f+f0)